Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Fibre optics and optical communications articles from across Nature Portfolio

Fibre optics and optical communications is the use of thin strands of glass for sending information encoded into light over long distances. Total internal reflection prevents light inserted into one end of the fibre from escaping through the sides. Transferring information optically in this way enables much higher transmission rates than using an electrical signal.

Latest Research and Reviews

research paper on fiber optic technology

Free-standing microscale photonic lantern spatial mode (De-)multiplexer fabricated using 3D nanoprinting

A diminutive 3D nano-printed photonic lantern supporting multiplexing of six input sources to a six-mode optical fiber is demonstrated, at 375 μm total length, exhibiting low insertion, polarization and mode-dependent loss.

  • Yehudit Garcia
  • Dan M. Marom

research paper on fiber optic technology

Low-complexity continuous-variable quantum key distribution with true local oscillator using pilot-assisted frequency locking

  • Andres Ruiz-Chamorro
  • Aida Garcia-Callejo
  • Veronica Fernandez

research paper on fiber optic technology

A new gas detection technique through cross-correlation with a complex aperiodic FBG

  • Matthew Rahme
  • Peter Tuthill
  • Sergio Leon-Saval

research paper on fiber optic technology

Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings

The authors present a scalable on-chip parallel intensity modulation and direct detection (IM-DD) data transmission system. This system offers an aggregate line rate of 1.68 Tbit/s over a 20-km-long SMF. For the chromatic dispersion compensation of 40-km-SMFs, the energy consumption is ~0.3 pJ/bit, much less than the commercial 400G-ZR coherent transceivers counterparts.

  • Yuanbin Liu
  • Hongyi Zhang
  • Andrew W. Poon

research paper on fiber optic technology

Empowering high-dimensional optical fiber communications with integrated photonic processors

Leveraging photonic integration and photonic computing acceleration, Lu et al. proposed and demonstrated a scalable integrated silicon photonic processor that enables high-capacity optical fiber communications using various fiber spatial modes.

  • Zengqi Chen

research paper on fiber optic technology

Low-loss and polarization insensitive 32 × 4 optical switch for ROADM applications

  • Xiaotian Zhu

Advertisement

News and Comment

research paper on fiber optic technology

Deep learning sheds new light on non-orthogonal optical multiplexing

  • Zhengzhong Huang
  • Liangcai Cao

research paper on fiber optic technology

Optimizing multi-parameter distributed fiber sensors: a hybrid Rayleigh-Brillouin-Raman System approach

Hybrid Rayleigh-Brillouin-Raman distributed sensing system: Coded pulse pairs are employed for simultaneously measuring vibration, strain and temperature distributions, through an optimized detection scheme of Rayleigh, Brillouin, and Raman scatterings.

  • Kwang Yong Song

research paper on fiber optic technology

Optical Coriolis force guides light along Trojan beams

Trojan beams, which are optical counterparts of Trojan asteroids that maintain stable orbits alongside planets, have been successfully showcased in experiments, opening up possibilities for transporting light in unconventional settings.

  • Tomáš Čižmár

research paper on fiber optic technology

Metalens and microtaper spectrometers on a fingertip

A multi-foci metalens and a leaky-mode microtaper provide innovative platforms to achieve high-resolution, broadband and compact spectrometers.

  • Peixia Zheng
  • Hong-Chao Liu

research paper on fiber optic technology

Reconstructive spectrometers taper down in price

research paper on fiber optic technology

Mid-infrared optical modulator enabled by photothermal effect

Quick links.

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research paper on fiber optic technology

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

coatings-logo

Article Menu

research paper on fiber optic technology

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

A review of optical fiber sensing technology based on thin film and fabry–perot cavity.

research paper on fiber optic technology

1. Introduction

2. principle, 3. research progress of optical fiber fabry–perot cavity sensors, 3.1. pressure sensor, 3.2. magnetic field sensor, 3.3. refractive index sensing, 3.4. humidity sensor, 3.5. gas detection, 3.6. temperature sensor, 3.7. biological or medical sensor, 4. conclusions, author contributions, institutional review board statement, informed consent statement, data availability statement, conflicts of interest.

  • Lu, P.; Men, L.; Sooley, K.; Chen, Q. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 2009 , 94 , 131110. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Tian, Z.; Yam, S.S.H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Loock, H.-P.; Oleschuk, R.D. Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photonics Technol. Lett. 2008 , 20 , 626–628. [ Google Scholar ] [ CrossRef ]
  • Tian, Z.; Yam, S.S.H.; Loock, H.-P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett. 2008 , 33 , 1105–1107. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Tian, Z.; Yam, S.S.H.; Loock, H.-P. Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photonics Technol. Lett. 2008 , 20 , 1387–1389. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Choi, H.Y.; Park, K.S.; Park, S.J.; Paek, U.-C.; Lee, B.H.; Choi, E.S. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt. Lett. 2008 , 33 , 2455–2457. [ Google Scholar ] [ CrossRef ]
  • Choi, H.Y.; Mudhana, G.; Park, K.S.; Paek, U.-C.; Lee, B.H. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt. Express 2010 , 18 , 141–149. [ Google Scholar ] [ CrossRef ]
  • Dong, X.; Tam, H.Y.; Shum, P. Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Appl. Phys. Lett. 2007 , 90 , 151113. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Fu, H.Y.; Tam, H.Y.; Shao, L.-Y.; Dong, X.; Wai, P.K.A.; Lu, C.; Khijwania, S.K. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt. 2008 , 47 , 2835–2839. [ Google Scholar ] [ CrossRef ]
  • Wang, W. Fabry-Perot Interference Fiber Acoustic Wave Sensor Based on Laser Welding All-Silica Glass. Materials 2022 , 15 , 2484. [ Google Scholar ] [ CrossRef ]
  • Ruan, J. High sensitivity Sagnac interferometric strain sensor based polarization maintaining fibre enhanced coupling. IET Optoelectron. 2021 , 15 , 48–51. [ Google Scholar ] [ CrossRef ]
  • Tian, J.; Zuo, Y.; Hou, M.; Jiang, Y. Magnetic field measurement based on a fiber laser oscillation circuit merged with a polarization-maintaining fiber Sagnac interference structure. Opt. Express 2021 , 29 , 8763–8769. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wu, B.; Zhao, C.; Kang, J.; Wang, D. Characteristic study on volatile organic compounds optical fiber sensor with zeolite thin film-coated spherical end. Opt. Fiber Technol. 2017 , 34 , 91–97. [ Google Scholar ] [ CrossRef ]
  • Li, J.-X.; Tong, Z.-R.; Jing, L.; Zhang, W.-H.; Qin, J.; Liu, J.-W. Fiber temperature and humidity sensor based on photonic crystal fiber coated with graphene oxide. Opt. Commun. 2020 , 467 , 134–139. [ Google Scholar ] [ CrossRef ]
  • Islam, M.R.; Ali, M.M.; Lai, M.-H.; Lim, K.-S.; Ahmad, H. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review. Sensors 2014 , 14 , 7451–7488. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Huang, Y.W.; Tao, J.; Huang, X.G. Research Progress on F-P InterferenceBased Fiber-Optic Sensors. Sensors 2016 , 16 , 1424. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Rao, Y.-J.; Ran, Z.-L.; Gong, Y. Fiber-Optic Fabry-Perot Sensors: An Introduction ; CRC Press: Boca Raton, FL, USA, 2017. [ Google Scholar ]
  • Wang, X.; Jiang, J.; Wang, S.; Liu, K.; Liu, T. All-silicon dual-cavity fiber-optic pressure sensor with ultralow pressure-temperature cross-sensitivity and wide working temperature range. Photonics Res. 2021 , 9 , 521–529. [ Google Scholar ] [ CrossRef ]
  • Zeng, L.; Chen, M.; Yan, W.; Li, Z.; Yang, F. Si-grating-assisted SPR sensor with high figure of merit based on Fabry-Perot cavity. Opt. Commun. 2020 , 457 , 124641. [ Google Scholar ] [ CrossRef ]
  • Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light ; Elsevier: Amsterdam, The Netherlands, 2013. [ Google Scholar ]
  • Li, Y.; Li, Y.; Liu, Y.; Li, Y.; Qu, S. Detection limit analysis of optical fiber sensors based on interferometers with the Vernier-effect. Opt. Express 2022 , 30 , 35734–35748. [ Google Scholar ] [ CrossRef ]
  • Duguay, M.A.; Kokubun, Y.; Koch, T.L.; Pfeiffer, L. Antiresonant reflecting optical waveguides in SiO 2 -Si multilayer structures. Appl. Phys. Lett. 1986 , 49 , 13–15. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Litchinitser, N.M.; Abeeluck, A.K.; Headley, C.; Eggleton, B.J. Antiresonant reflecting photonic crystal optical waveguides. Opt. Lett. 2002 , 27 , 1592–1594. [ Google Scholar ] [ CrossRef ]
  • Hou, M.; Zhu, F.; Wang, Y.; Wang, Y.; Liao, C.; Liu, S.; Lu, P. Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing. Opt. Express 2016 , 24 , 27890–27898. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Gao, R.; Lu, D.-F.; Cheng, J.; Jiang, Y.; Jiang, L.; Qi, Z.-M. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide. Sens. Actuators B Chem. 2016 , 222 , 618–624. [ Google Scholar ] [ CrossRef ]
  • Rosolem, J.B.; Penze, R.S.; Floridia, C.; Bassan, F.R.; Peres, R.; de Costa, E.F.; de Araujo Silva, A.; Coral, A.D.; Junior, J.R.N.; Vasconcelos, D.; et al. Dynamic Effects of Temperature on FBG Pressure Sensors Used in Combustion Engines. IEEE Sens. J. 2021 , 21 , 3020–3027. [ Google Scholar ] [ CrossRef ]
  • Vaddadi, V.S.C.S.; Parne, S.R.; Afzulpurkar, S.; Desai, S.P.; Parambil, V.V. Design and development of pressure sensor based on Fiber Bragg Grating (FBG) for ocean applications. Eur. Phys. J. Appl. Phys. 2020 , 90 , 30501. [ Google Scholar ] [ CrossRef ]
  • Lu, Y.; Tian, F.; Chen, Y.; Han, Z.; Zeng, Z.; Liu, C.; Yang, X.; Li, L.; Zhang, J. Characteristics of a capillary single core fiber based on SPR for hydraulic pressure sensing. Opt. Commun. 2023 , 530 , 129125. [ Google Scholar ] [ CrossRef ]
  • Zhao, Y.; Wu, Q.-L.; Zhang, Y.-N. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement 2019 , 148 , 106792. [ Google Scholar ] [ CrossRef ]
  • Reja, M.I.; Nguyen, L.V.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. Multipoint pressure sensing at up to 900 °C using a fiber optic multimode interferometer. Opt. Fiber Technol. 2023 , 75 , 103157. [ Google Scholar ] [ CrossRef ]
  • Pang, Y.-N.; Liu, B.; Liu, J.; Wan, S.-P.; Wu, T.; Yuan, J.; Xin, X.; He, X.-D.; Wu, Q. Singlemode-Multimode-Singlemode Optical Fiber Sensor for Accurate Blood Pressure Monitoring. J. Light. Technol. 2022 , 40 , 4443–4450. [ Google Scholar ] [ CrossRef ]
  • Zhao, Y.; Li, H.; Li, J.; Zhou, A. Cascaded fiber MZIs for simultaneous measurement of pressure and temperature. Opt. Fiber Technol. 2021 , 66 , 102629. [ Google Scholar ] [ CrossRef ]
  • Lei, X.; Dong, X.; Lu, C.; Sun, T.; Grattan, K.T.V. Underwater Pressure and Temperature Sensor Based on a Special Dual-Mode Optical Fiber. IEEE Access 2020 , 8 , 146463–146471. [ Google Scholar ] [ CrossRef ]
  • Tada, H.; Kumpel, A.E.; Lathrop, R.E.; Slanina, J.B.; Nieva, P.; Zavracky, P.; Miaoulis, I.N.; Wong, P.Y. Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J. Appl. Phys. 2000 , 87 , 4189–4193. [ Google Scholar ] [ CrossRef ]
  • Li, H.; Luo, X.; Zhang, H.; Dong, M.; Zhu, L. All-Silica Diaphragm-based Optical Fiber Fabry-Perot Pressure Sensor Fabricated by CO 2 Laser Melting Capillary End Face. Optik 2023 , 287 , 170994. [ Google Scholar ] [ CrossRef ]
  • Wang, W.; Wu, N.; Tian, Y.; Niezrecki, C.; Wang, X. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm. Opt. Express 2010 , 18 , 9006–9014. [ Google Scholar ] [ CrossRef ]
  • Guo, X.; Zhou, J.; Du, C.; Wang, X. Highly Sensitive Miniature All-Silica Fiber Tip Fabry-Perot Pressure Sensor. IEEE Photonics Technol. Lett. 2019 , 31 , 689–692. [ Google Scholar ] [ CrossRef ]
  • Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s Modulus of Silicon? J. Microelectromech. Syst. 2010 , 19 , 229–238. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010 , 35 , 357–401. [ Google Scholar ] [ CrossRef ]
  • Tjong, S.C. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R Rep. 2006 , 53 , 73–197. [ Google Scholar ] [ CrossRef ]
  • Schneider, F.; Draheirn, J.; Kamberger, R.; Wallrabe, U. Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS. Sens. Actuators A Phys. 2009 , 151 , 95–99. [ Google Scholar ] [ CrossRef ]
  • Liu, M.; Sun, J.; Chen, Q. Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sens. Actuators A Phys. 2009 , 151 , 42–45. [ Google Scholar ] [ CrossRef ]
  • Luo, C.; Liu, X.; Liu, J.; Shen, J.; Li, H.; Zhang, S.; Hu, J.; Zhang, Q.; Wang, G.; Huang, M. An Optimized PDMS Thin Film Immersed Fabry-Perot Fiber Optic Pressure Sensor for Sensitivity Enhancement. Coatings 2019 , 9 , 290. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Wei, X.; Song, X.; Li, C.; Hou, L.; Li, Z.; Li, Y.; Ran, L. Optical Fiber Gas Pressure Sensor Based on Polydimethylsiloxane Microcavity. J. Light. Technol. 2021 , 39 , 2988–2993. [ Google Scholar ] [ CrossRef ]
  • Fu, D.; Liu, X.; Shang, J.; Sun, W.; Liu, Y. A Simple, Highly Sensitive Fiber Sensor for Simultaneous Measurement of Pressure and Temperature. IEEE Photonics Technol. Lett. 2020 , 32 , 747–750. [ Google Scholar ] [ CrossRef ]
  • Ranjbar-Naeini, O.; Barandak, A.; Tahmasebi, M.; Pooladmast, A.; Latifi, H. Characterization the Effect of Pressure and Concentration of Acetone Gas on Micro Polymeric Curved Diaphragm Fabry Perot Optical Fiber Sensor. In Proceedings of the Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018; p. WF10. [ Google Scholar ]
  • Endruweit, A.; Johnson, M.S.; Long, A.C. Curing of composite components by ultraviolet radiation: A review. Polym. Compos. 2006 , 27 , 119–128. [ Google Scholar ] [ CrossRef ]
  • Priola, A.; Gozzelino, G.; Ferrero, F.; Malucelli, G. Properties of polymeric films obtained from u.v. cured poly(ethylene glycol) diacrylates. Polymer 1993 , 34 , 3653–3657. [ Google Scholar ] [ CrossRef ]
  • Chen, Y.; Zheng, Y.; Liang, D.; Zhang, Y.; Guo, J.; Lian, S.; Yu, Y.; Du, C.; Ruan, S. Fiber-Tip Fabry-Perot Cavity Pressure Sensor with UV-Curable Polymer Film Based on Suspension Curing Method. IEEE Sens. J. 2022 , 22 , 6651–6660. [ Google Scholar ] [ CrossRef ]
  • Liu, L.; Lu, P.; Wang, S.; Fu, X.; Sun, Y.; Liu, D.; Zhang, J.; Xu, H.; Yao, Q. UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing. IEEE Photonics J. 2016 , 8 , 6800709. [ Google Scholar ] [ CrossRef ]
  • Zhang, S.; Lei, Q.; Hu, J.; Zhao, Y.; Gao, H.; Shen, J.; Li, C. An optical fiber pressure sensor with ultra-thin epoxy film and high sensitivity characteristics based on blowing bubble method. IEEE Photonics J. 2021 , 13 , 6800510. [ Google Scholar ] [ CrossRef ]
  • Oliveira, R.; Bilro, L.; Nogueira, R.; Rocha, A.M. Adhesive Based Fabry-Perot Hydrostatic Pressure Sensor with Improved and Controlled Sensitivity. J. Light. Technol. 2019 , 37 , 1909–1915. [ Google Scholar ] [ CrossRef ]
  • Ni, Z.H.; Wang, H.M.; Kasim, J.; Fan, H.M.; Yu, T.; Wu, Y.H.; Feng, Y.P.; Shen, Z.X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007 , 7 , 2758–2763. [ Google Scholar ] [ CrossRef ]
  • Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008 , 321 , 385–388. [ Google Scholar ] [ CrossRef ]
  • Ma, J.; Jin, W.; Ho, H.L.; Dai, J.Y. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett. 2012 , 37 , 2493–2495. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Cui, Q.; Thakur, P.; Rablau, C.; Avrutsky, I.; Cheng, M.M.-C. Miniature Optical Fiber Pressure Sensor with Exfoliated Graphene Diaphragm. IEEE Sens. J. 2019 , 19 , 5621–5631. [ Google Scholar ] [ CrossRef ]
  • Ge, Y.; Shen, L.; Sun, M. Temperature Compensation for Optical Fiber Graphene Micro-Pressure Sensor Using Genetic Wavelet Neural Networks. IEEE Sens. J. 2021 , 21 , 24195–24201. [ Google Scholar ] [ CrossRef ]
  • Ni, W.; Lu, P.; Liu, D.; Zhang, J. Graphene Diaphragm-based Extrinsic Fabry-Perot Interferometer for Low Frequency Acoustic Sensing. In Proceedings of the Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 31 July–4 August 2017. [ Google Scholar ]
  • Cai, J.; Wang, G.; Wu, Y.; Gao, Z.; Qiu, Z. Extrinsic Optical Fiber Pressure Sensor Based on FP Cavity. Instrum. Mes. Métrol. 2020 , 19 , 43–49. [ Google Scholar ]
  • Guo, F.; Fink, T.; Han, M.; Koester, L.; Turner, J.; Huang, J. High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Opt. Lett. 2012 , 37 , 1505–1507. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Huang, Q.; Deng, S.; Li, M.; Wen, X.; Lu, H. Fabry-Perot acoustic sensor based on a thin gold diaphragm. Opt. Eng. 2020 , 59 , 064105. [ Google Scholar ] [ CrossRef ]
  • Zhang, Z.; Wang, Y.; Feng, Z.; Shi, J.; Wang, C.; Li, D.; Yao, H.; Li, C.; Kang, R.; Li, L.; et al. Preliminary Strain Measurement in High Field Superconducting Magnets with Fiber Bragg Grating. IEEE Trans. Appl. Supercond. 2022 , 32 , 9001105. [ Google Scholar ] [ CrossRef ]
  • Odenbach, S. Recent progress in magnetic fluid research. J. Phys. Condens. Matter 2004 , 16 , R1135. [ Google Scholar ] [ CrossRef ]
  • Philip, J. Magnetic nanofluids: Recent advances, applications, challenges, and future directions. Adv. Colloid Interface Sci. 2022 , 311 , 102810. [ Google Scholar ] [ CrossRef ]
  • Zhang, R.; Pu, S.; Li, Y.; Zhao, Y.; Jia, Z.; Yao, J.; Li, Y. Mach-Zehnder interferometer cascaded with FBG for simultaneous measurement of magnetic field and temperature. IEEE Sens. J. 2019 , 19 , 4079–4083. [ Google Scholar ] [ CrossRef ]
  • Zeng, L.; Sun, X.; Zhang, L.; Hu, Y.; Duan, J.A. High sensitivity magnetic field sensor based on a Mach-Zehnder interferometer and magnetic fluid. Optik 2022 , 249 , 168234. [ Google Scholar ] [ CrossRef ]
  • Zhang, Y.; Guo, Y.; Zhu, F.; Qi, K. In-line Michelson interferometer based on microspherical structure for magnetic field applications. In Proceedings of the Optical and Quantum Sensing and Precision Metrology, Online Only, 5 March 2021; pp. 146–151. [ Google Scholar ]
  • Xiong, Z.; Guan, C.; Duan, Z.; Cheng, T.; Ye, P.; Yang, J.; Shi, J.; Yang, J.; Yuan, L.; Grattan, K.T.V. All-optical vector magnetic field sensor based on a side-polished two-core fiber Michelson interferometer. Opt. Express 2022 , 30 , 22746–22754. [ Google Scholar ] [ CrossRef ]
  • Huang, Y.; Wang, T.; Deng, C.; Zhang, X.; Pang, F.; Bai, X.; Dong, W.; Wang, L.; Chen, Z. A Highly Sensitive Intensity-Modulated Optical Fiber Magnetic Field Sensor Based on the Magnetic Fluid and Multimode Interference. J. Sens. 2017 , 2017 , 9573061. [ Google Scholar ] [ CrossRef ]
  • Ning, Y.; Zhang, Y.; Guo, H.; Zhang, M.; Zhang, Y.; Li, S.; Liu, Z.; Zhang, J.; Yang, X.; Yuan, L. Optical Fiber Magnetic Field Sensor Based on Silk Fibroin Hydrogel. IEEE Sens. J. 2022 , 22 , 14878–14882. [ Google Scholar ] [ CrossRef ]
  • Zhao, Y.; Wang, X.-X.; Lv, R.-Q.; Zheng, H.-K.; Zhou, Y.-F.; Chen, M.-Q. Reflective highly sensitive Fabry–Pérot magnetic field sensor based on magneto-volume effect of magnetic fluid. IEEE Trans. Instrum. Meas. 2021 , 70 , 7003506. [ Google Scholar ] [ CrossRef ]
  • Wang, X.-X.; Zhao, Y.; Lv, R.-Q.; Zheng, H.-K.; Cai, L. Magnetic Field Measurement Method Based on the Magneto-Volume Effect of Hollow Core Fiber Filled with Magnetic Fluid. IEEE Trans. Instrum. Meas. 2021 , 70 , 9513708. [ Google Scholar ] [ CrossRef ]
  • Zhao, Y.; Wang, X.-X.; Lv, R.-Q.; Li, G.-L.; Zheng, H.-K.; Zhou, Y.-F. Highly Sensitive Reflective Fabry-Perot Magnetic Field Sensor Using Magnetic Fluid Based on Vernier Effect. IEEE Trans. Instrum. Meas. 2021 , 70 , 7000808. [ Google Scholar ] [ CrossRef ]
  • Hocking, L.M.; Rivers, A.D. The spreading of a drop by capillary action. J. Fluid Mech. 1982 , 121 , 425–442. [ Google Scholar ] [ CrossRef ]
  • Sun, B.; Bai, M.; Ma, X.; Wang, X.; Zhang, Z.; Zhang, L. Magnetic-Based Polydimethylsiloxane Cap for Simultaneous Measurement of Magnetic Field and Temperature. J. Light. Technol. 2022 , 40 , 2625–2630. [ Google Scholar ] [ CrossRef ]
  • Zhou, B.; Lu, C.; Mao, B.-M.; Tam, H.-Y.; He, S. Magnetic field sensor of enhanced sensitivity and temperature self-calibration based on silica fiber Fabry-Perot resonator with silicone cavity. Opt. Express 2017 , 25 , 8108–8114. [ Google Scholar ] [ CrossRef ]
  • Xu, J.; Huang, K.; Zheng, J.; Li, J.; Pei, L.; You, H.; Ning, T. Sensitivity enhanced magnetic field sensor based on hollow core fiber Fabry-Perot interferometer and vernier effect. IEEE Photonics J. 2022 , 14 , 6841205. [ Google Scholar ] [ CrossRef ]
  • Wang, Z.; Jiang, S.; Yang, P.; Wei, W.; Bao, W.; Peng, B. High-sensitivity and high extinction ratio fiber strain sensor with temperature insensitivity by cascaded MZI and FPI. Opt. Express 2023 , 31 , 7073–7089. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Liu, G.; Li, K.; Hao, P.; Zhou, W.; Wu, Y.; Xuan, M. Bent optical fiber taper for refractive index detection with a high sensitivity. Sens. Actuators A Phys. 2013 , 201 , 352–356. [ Google Scholar ] [ CrossRef ]
  • Chen, Y.; Han, Q.; Liu, T.; Liu, F.; Yao, Y. Simultaneous measurement of refractive index and temperature using a cascaded FBG/droplet-like fiber structure. IEEE Sens. J. 2015 , 15 , 6432–6436. [ Google Scholar ] [ CrossRef ]
  • Wang, J.; Liu, B.; Wu, Y.; Mao, Y.; Zhao, L.; Sun, T.; Nan, T.; Han, Y. Temperature insensitive fiber Fabry-Perot/Mach-Zehnder hybrid interferometer based on photonic crystal fiber for transverse load and refractive index measurement. Opt. Fiber Technol. 2020 , 56 , 102163. [ Google Scholar ] [ CrossRef ]
  • Xia, F.; Zhao, Y. RI sensing system with high sensitivity and large measurement range using a microfiber MZI and a photonic crystal fiber MZI. Measurement 2020 , 156 , 107603. [ Google Scholar ] [ CrossRef ]
  • Jiang, X.; Wang, Q. Refractive index sensitivity enhancement of optical fiber SPR sensor utilizing layer of MWCNT/PtNPs composite. Opt. Fiber Technol. 2019 , 51 , 118–124. [ Google Scholar ] [ CrossRef ]
  • Teng, C.; Shao, P.; Li, S.; Li, S.; Liu, H.; Deng, H.; Chen, M.; Yuan, L.; Deng, S. Double-side polished U-shape plastic optical fiber based SPR sensor for the simultaneous measurement of refractive index and temperature. Opt. Commun. 2022 , 525 , 128844. [ Google Scholar ] [ CrossRef ]
  • Liang, W.; Huang, Y.; Xu, Y.; Lee, R.K.; Yariv, A. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 2005 , 86 , 151122. [ Google Scholar ] [ CrossRef ]
  • Upadhyay, C.; Dhawan, D. Fiber Bragg grating refractive index sensor based on double D-shaped fiber. Opt. Quantum Electron. 2023 , 55 , 271. [ Google Scholar ] [ CrossRef ]
  • Ran, Z.; Rao, Y.; Zhang, J.; Liu, Z.; Xu, B. A miniature fiber-optic refractive-index sensor based on laser-machined Fabry–Perot interferometer tip. J. Light. Technol. 2009 , 27 , 5426–5429. [ Google Scholar ]
  • Quan, M.; Lu, Z.; Tian, J.; Yao, Y. Refractive index Fabry–Perot interferometric fiber sensor based on a microporous silver diaphragm and silica tube. In Proceedings of the Asia Communications and Photonics Conference, Hong Kong, China, 19–23 November 2015; p. ASu2A.47. [ Google Scholar ]
  • Majchrowicz, D.; Hirsch, M.; Wierzba, P.; Bechelany, M.; Viter, R.; Jedrzejewska-Szczerska, M. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Perot Sensing Interferometers. Sensors 2016 , 16 , 416. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Zhang, T.; Liu, Y.; Yang, D.; Wang, Y.; Fu, H.; Jia, Z.; Gao, H. Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature. Opt. Fiber Technol. 2019 , 49 , 64–70. [ Google Scholar ] [ CrossRef ]
  • Ujah, E.; Lai, M.; Slaughter, G. Ultrasensitive tapered optical fiber refractive index glucose sensor. Sci. Rep. 2023 , 13 , 4495. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Liu, Z.-D.; Liu, B.; Liu, J.; Fu, Y.; Wang, M.; Wan, S.-P.; He, X.; Yuan, J.; Chan, H.-P.; Wu, Q. Sensing Characteristics of Fiber Fabry-Perot Sensors Based on Polymer Materials. IEEE Access 2020 , 8 , 171316–171324. [ Google Scholar ] [ CrossRef ]
  • Guo, J.-Y.; Shi, B.; Sun, M.-Y.; Zhang, C.-C.; Wei, G.-Q.; Liu, J. Characterization of an ORMOCER ® -coated FBG sensor for relative humidity sensing. Measurement 2021 , 171 , 108851. [ Google Scholar ] [ CrossRef ]
  • Riza, M.A.; Go, Y.I.; Harun, S.W.; Anas, S.B.A. Optimal etching process and cladding dimension for improved coating of porous hemispherical ZnO nanostructure on FBG humidity sensor. Laser Phys. 2023 , 33 , 075901. [ Google Scholar ] [ CrossRef ]
  • Wang, Y.; Liu, Y.; Zou, F.; Jiang, C.; Mou, C.; Wang, T. Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film. Sensors 2019 , 19 , 2263. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Yan, J.; Feng, J.; Ge, J.; Chen, J.; Wang, F.; Xiang, C.; Wang, D.; Yu, Q.; Zeng, H. Highly sensitive humidity sensor based on a GO/Co-MOF-74 coated long period fiber grating. IEEE Photonics Technol. Lett. 2021 , 34 , 77–80. [ Google Scholar ] [ CrossRef ]
  • Zhang, J.; Tong, Z.; Zhang, W.; Zhao, Y.; Liu, Y. Research on NCF-PCF-NCF Structure Interference Characteristic for Temperature and Relative Humidity Measurement. IEEE Photonics J. 2021 , 13 , 7100805. [ Google Scholar ] [ CrossRef ]
  • Gao, P.; Zheng, X.; Liu, Y.; Wang, Z. Monitoring relative humidity using a Mach-Zehnder interferometer (MZI) senor based upon a photonic crystal fiber (PCF) coated with polyvinyl alcohol (PVA). Instrum. Sci. Technol. 2023 , 51 , 198–208. [ Google Scholar ] [ CrossRef ]
  • Hu, P.; Dong, X.; Ni, K.; Chen, L.H.; Wong, W.C.; Chan, C.C. Sensitivity-enhanced Michelson interferometric humidity sensor with waist-enlarged fiber bitaper. Sens. Actuators B Chem. 2014 , 194 , 180–184. [ Google Scholar ] [ CrossRef ]
  • Shao, M.; Sun, H.; Liang, J.; Han, L.; Feng, D. In-fiber Michelson interferometer in photonic crystal fiber for humidity measurement. IEEE Sens. J. 2020 , 21 , 1561–1567. [ Google Scholar ] [ CrossRef ]
  • Ali, U.; Abd Karim, K.J.B.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015 , 55 , 678–705. [ Google Scholar ] [ CrossRef ]
  • Cui, J.; Chen, G.; Li, J. PMMA-coated SMF-CLF-SMF-cascaded fiber structure and its humidity sensing characteristics. Appl. Phys. B 2022 , 128 , 36. [ Google Scholar ] [ CrossRef ]
  • Li, M.; Ma, C.; Li, D.; Bao, S.; Jin, J.; Zhang, Y.; Liu, Q.; Liu, M.; Zhang, Y.; Li, T.; et al. Dual-parameter optical fiber sensor for temperature and humidity based on PMMA-microsphere and FBG composite structure. Opt. Fiber Technol. 2023 , 78 , 103292. [ Google Scholar ] [ CrossRef ]
  • Meng, J.; Ma, J.-N.; Li, J.; Yan, H.; Meng, F. Humidity sensing and temperature response performance of polymer gel cold-spliced optical fiber Fabry-Perot interferometer. Opt. Fiber Technol. 2022 , 68 , 102823. [ Google Scholar ] [ CrossRef ]
  • Yao, J.; Zhu, T.; Duan, D.-W.; Deng, M. Nanocomposite polyacrylamide based open cavity fiber Fabry-Perot humidity sensor. Appl. Opt. 2012 , 51 , 7643–7647. [ Google Scholar ] [ CrossRef ]
  • Chen, H.; You, T.; Xu, G.; Gao, Y.; Zhang, C.; Yang, N.; Yin, P. Humidity-responsive nanocomposite of gold nanoparticles and polyacrylamide brushes grafted on Ag film: Synthesis and application as plasmonic nanosensor. Sci. China Mater. 2018 , 61 , 1201–1208. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Wang, C.; Zhou, B.; Jiang, H.; He, S. Agarose Filled Fabry-Perot Cavity for Temperature Self-Calibration Humidity Sensing. IEEE Photonics Technol. Lett. 2016 , 28 , 2027–2030. [ Google Scholar ] [ CrossRef ]
  • Mathew, J.; Semenova, Y.; Farrell, G. Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer. Opt. Express 2013 , 21 , 6313–6320. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Xia, R.-L.; Liu, J.; Shi, J.; He, X.-D.; Yuan, J.; Pike, A.R.; Chu, L.; Wu, Q.; Liu, B. Compact fiber Fabry-Perot sensors filled with PNIPAM hydrogel for highly sensitive relative humidity measurement. Measurement 2022 , 201 , 111781. [ Google Scholar ] [ CrossRef ]
  • Li, S.; Hernandez, S.; Salazar, N. Biopolymer-Based Hydrogels for Harvesting Water from Humid Air: A Review. Sustainability 2023 , 15 , 848. [ Google Scholar ] [ CrossRef ]
  • Wang, Y.; Huang, Q.; Zhu, W.; Yang, M. Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer. IEEE Photonics Technol. Lett. 2018 , 30 , 833–836. [ Google Scholar ] [ CrossRef ]
  • Xu, Y.; Zhao, X.; Li, Y.; Qin, Z.; Pang, Y.; Liu, Z. Simultaneous measurement of relative humidity and temperature based on forward Brillouin scattering in polyimide-overlaid fiber. Sens. Actuators B Chem. 2021 , 348 , 130702. [ Google Scholar ] [ CrossRef ]
  • Vaz, A.; Barroca, N.; Ribeiro, M.; Pereira, A.; Frazao, O. Optical Fiber Humidity Sensor Based on Polyvinylidene Fluoride Fabry-Perot. IEEE Photonics Technol. Lett. 2019 , 31 , 549–552. [ Google Scholar ] [ CrossRef ]
  • Yu, C.; Gong, H.; Zhang, Z.; Ni, K.; Zhao, C. Temperature-Compensated High-Sensitivity Relative Humidity Sensor Based on Band-Pass Filtering and Vernier Effect. IEEE Trans. Instrum. Meas. 2022 , 71 , 7001808. [ Google Scholar ] [ CrossRef ]
  • Lakouraj, M.M.; Tajbakhsh, M.; Mokhtary, M. Synthesis and swelling characterization of cross-linked PVP/PVA hydrogels. Iran. Polym. J. 2005 , 14 , 1022–1030. [ Google Scholar ]
  • Gomes, A.D.; Bartelt, H.; Frazao, O. Optical Vernier Effect: Recent Advances and Developments. Laser Photonics Rev. 2021 , 15 , 2000588. [ Google Scholar ] [ CrossRef ]
  • Huang, C.; Xie, W.; Yang, M.; Dai, J.; Zhang, B. Optical Fiber Fabry-Perot Humidity Sensor Based on Porous Al 2 O 3 Film. IEEE Photonics Technol. Lett. 2015 , 27 , 2127–2130. [ Google Scholar ] [ CrossRef ]
  • Peng, J.; Wang, W.; Qu, Y.; Sun, T.; Lv, D.; Dai, J.; Yang, M. Thin films based one-dimensional photonic crystal for humidity detection. Sens. Actuators A Phys. 2017 , 263 , 209–215. [ Google Scholar ] [ CrossRef ]
  • Li, C.; Yu, X.; Zhou, W.; Cui, Y.; Liu, J.; Fan, S. Ultrafast miniature fiber-tip Fabry-Perot humidity sensor with thin graphene oxide diaphragm. Opt. Lett. 2018 , 43 , 4719–4722. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Yao, L.; Zheng, M.; Li, H.; Ma, L.; Shen, W. High-performance humidity sensors based on high-field anodized porous alumina films. Nanotechnology 2009 , 20 , 395501. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Yan, G.; Zhang, A.P.; Ma, G.; Wang, B.; Kim, B.; Im, J.; He, S.; Chung, Y. Fiber-Optic Acetylene Gas Sensor Based on Microstructured Optical Fiber Bragg Gratings. IEEE Photonics Technol. Lett. 2011 , 23 , 1588–1590. [ Google Scholar ] [ CrossRef ]
  • Zhou, Z.; Xu, Y.; Qiao, C.; Liu, L.; Jia, Y. A novel low-cost gas sensor for CO2 detection using polymer-coated fiber Bragg grating. Sens. Actuators B Chem. 2021 , 332 , 129482. [ Google Scholar ] [ CrossRef ]
  • Yang, F.; Jin, W.; Lin, Y.; Wang, C.; Lut, H.; Tan, Y. Hollow-core microstructured optical fiber gas sensors. J. Light. Technol. 2017 , 35 , 3413–3424. [ Google Scholar ] [ CrossRef ]
  • Liu, C.; Chen, H.; Chen, Q.; Zheng, Y.; Gao, Z.; Fan, X.; Wu, B.; Shum, P.P. An ultra-high sensitivity methane gas sensor based on Vernier effect in two parallel optical fiber Sagnac loops. Opt. Commun. 2023 , 540 , 129509. [ Google Scholar ] [ CrossRef ]
  • Hao, T.; Chiang, K.S. Graphene-Based Ammonia-Gas Sensor Using In-Fiber Mach-Zehnder Interferometer. IEEE Photonics Technol. Lett. 2017 , 29 , 2035–2038. [ Google Scholar ] [ CrossRef ]
  • Feng, X.; Feng, W.; Tao, C.; Deng, D.; Qin, X.; Chen, R. Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer. Sens. Actuators B Chem. 2017 , 247 , 540–545. [ Google Scholar ] [ CrossRef ]
  • He, S.; Liu, Y.; Feng, W.; Li, B.; Yang, X.; Huang, X. Carbon monoxide gas sensor based on an α-Fe 2 O 3 /reduced graphene oxide quantum dots composite film integrated Michelson interferometer. Meas. Sci. Technol. 2021 , 33 , 035102. [ Google Scholar ] [ CrossRef ]
  • Zhou, J.; Huang, X.; Feng, W. Carbon monoxide gas sensor based on Co/Ni-MOF-74 coated no-core-fiber Michelson interferometer. Phys. Scr. 2023 , 98 , 015012. [ Google Scholar ] [ CrossRef ]
  • Ma, W.; Wang, R.; Rong, Q.; Shao, Z.; Zhang, W.; Guo, T.; Wang, J.; Qiao, X. CO 2 Gas Sensing Using Optical Fiber Fabry-Perot Interferometer Based on Polyethyleneimine/Poly (Vinyl Alcohol) Coating. IEEE Photonics J. 2017 , 9 , 6802808. [ Google Scholar ] [ CrossRef ]
  • Helberg, R.M.L.; Dai, Z.; Ansaloni, L.; Deng, L. PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO 2 separation performance. Green Energy Environ. 2020 , 5 , 59–68. [ Google Scholar ] [ CrossRef ]
  • Ma, W.; Xing, J.; Wang, R.; Rong, Q.; Zhang, W.; Li, Y.; Zhang, J.; Qiao, X. Optical fiber Fabry–Perot interferometric CO 2 gas sensor using guanidine derivative polymer functionalized layer. IEEE Sens. J. 2018 , 18 , 1924–1929. [ Google Scholar ] [ CrossRef ]
  • Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Carbon Dioxide Gas Sensor Based on Polyhexamethylene Biguanide Polymer Deposited on Silicon Nano-Cylinders Metasurface. Sensors 2021 , 21 , 378. [ Google Scholar ] [ CrossRef ]
  • Peng, J.; Feng, W.; Yang, X.; Huang, G.; Liu, S. Dual Fabry-Perot Interferometric Carbon Monoxide Sensor Based on the PANI/Co 3 O 4 Sensitive Membrane-Coated Fibre Tip. Z. Fur Naturforsch. Sect. A 2019 , 74 , 101–107. [ Google Scholar ] [ CrossRef ]
  • Pawar, D.; Rao, B.V.B.; Kale, S.N. Fe 3 O 4 -decorated graphene assembled porous carbon nanocomposite for ammonia sensing: Study using an optical fiber Fabry-Perot interferometer. Analyst 2018 , 143 , 1890–1898. [ Google Scholar ] [ CrossRef ]
  • Lopez-Torres, D.; Lopez-Aldaba, A.; Elostia Aguado, C.; Auguste, J.-L.; Jamier, R.; Roy, P.; Lopez-Amo, M.; Arregui, F.J. Sensitivity Optimization of a Microstructured Optical Fiber Ammonia Gas Sensor by Means of Tuning the Thickness of a Metal Oxide Nano-Coating. IEEE Sens. J. 2019 , 19 , 4982–4991. [ Google Scholar ] [ CrossRef ]
  • Bochenkov, V.; Sergeev, G. Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Met. Oxide Nanostruct. Their Appl. 2010 , 3 , 31–52. [ Google Scholar ]
  • Feng, Z.; Cheng, Y.; Chen, M.; Yuan, L.; Hong, D.; Li, L. Temperature-Compensated Multi-Point Strain Sensing Based on Cascaded FBG and Optical FMCW Interferometry. Sensors 2022 , 22 , 3970. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Eid, M.M.; Seliem, A.S.; Rashed, A.Z.; Mohammed, A.E.-N.A.; Ali, M.Y.; Abaza, S.S. High sensitivity sapphire FBG temperature sensors for the signal processing of data communications technology. Indones. J. Electr. Eng. Comput. Sci. 2021 , 21 , 1567–1574. [ Google Scholar ] [ CrossRef ]
  • Munoz-Hernandez, T.; Reyes-Vera, E.; Torres, P. Temperature Sensor Based on Whispering Gallery Modes of Metal-Filled Side-Hole Photonic Crystal Fiber Resonators. IEEE Sens. J. 2020 , 20 , 9170–9178. [ Google Scholar ] [ CrossRef ]
  • Yang, Y.; Wang, Z.; Zhang, X.; Zhang, Q.; Wang, T. Recent progress of in-fiber WGM microsphere resonator. Front. Optoelectron. 2023 , 16 , 10. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Chen, S.; Pan, P.; Xie, T.; Fu, H. Sensitivity enhanced fiber optic temperature sensor based on optical carrier microwave photonic interferometry with harmonic Vernier effect. Opt. Laser Technol. 2023 , 160 , 109029. [ Google Scholar ] [ CrossRef ]
  • Li, X.; Tan, J.; Li, W.; Yang, C.; Tan, Q.; Feng, G. A high-sensitivity optical fiber temperature sensor with composite materials. Opt. Fiber Technol. 2022 , 68 , 102821. [ Google Scholar ] [ CrossRef ]
  • Shao, M.; Zhang, R.; Gao, H.; Liu, Y.; Qiao, X.; Lin, Y. A High-Sensitivity Low-Temperature Sensor Based on Michelson Interferometer in Seven-Core Fiber. IEEE Photonics Technol. Lett. 2021 , 33 , 1293–1296. [ Google Scholar ] [ CrossRef ]
  • Wang, S.; Yang, Y.; Niu, P.; Wu, S.; Liu, S.; Jin, R.-B.; Lu, P.; Hu, X.; Dai, N. Fiber tip Michelson interferometer for temperature sensing based on polymer-filled suspended core fiber. Optics & Laser Technology 2021 , 141 , 107147. [ Google Scholar ]
  • Yin, J.; Liu, T.; Jiang, J.; Liu, K.; Wang, S.; Qin, Z.; Zou, S. Batch-Producible Fiber-Optic Fabry-Perot Sensor for Simultaneous Pressure and Temperature Sensing. IEEE Photonics Technol. Lett. 2014 , 26 , 2070–2073. [ Google Scholar ]
  • Liu, T.; Yin, J.; Jiang, J.; Liu, K.; Wang, S.; Zou, S. Differential-pressure-based fiber-optic temperature sensor using Fabry-Perot interferometry. Opt. Lett. 2015 , 40 , 1049–1052. [ Google Scholar ] [ CrossRef ]
  • Pan, R.; Yang, W.; Li, L.; Yang, Y.; Zhang, L.; Yu, X.; Fan, J.; Yu, S.; Xiong, Y. A High-Sensitive Fiber-Optic Fabry-Perot Sensor with Parallel Polymer-Air Cavities Based on Vernier Effect for Simultaneous Measurement of Pressure and Temperature. IEEE Sens. J. 2021 , 21 , 21577–21585. [ Google Scholar ] [ CrossRef ]
  • Zhang, S.; Mei, Y.; Xia, T.; Cao, Z.; Liu, Z.; Li, Z. Simultaneous measurement of temperature and pressure based on Fabry-Perot Interferometry for marine monitoring. Sensors 2022 , 22 , 4979. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Defas-Brucil, R.; Cano-Velazquez, M.S.; Velazquez-Benitez, A.M.; Hernandez-Cordero, J. Microbubble end-capped fiber-optic Fabry-Perot sensors. Opt. Lett. 2022 , 47 , 5569–5572. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Dean, L.M.; Ravindra, A.; Guo, A.X.; Yourdkhani, M.; Sottos, N.R. Photothermal Initiation of Frontal Polymerization Using Carbon Nanoparticles. ACS Appl. Polym. Mater. 2020 , 2 , 4690–4696. [ Google Scholar ] [ CrossRef ]
  • Zhou, X.; Li, X.; Li, S.; Yan, X.; Zhang, X.; Wang, F.; Suzuki, T.; Ohishi, Y.; Cheng, T. A miniature optical fiber Fabry–Perot interferometer temperature sensor based on tellurite glass. IEEE Trans. Instrum. Meas. 2021 , 70 , 7005706. [ Google Scholar ] [ CrossRef ]
  • Mohanna, Y.; Saugrain, J.-M.; Rousseau, J.-C.; Ledoux, P. Relaxation of internal stresses in optical fibers. J. Light. Technol. 1990 , 8 , 1799–1802. [ Google Scholar ] [ CrossRef ]
  • Liao, Y.; Liu, Y.; Li, Y.; Lang, C.; Cao, K.; Qu, S. Large-Range, Highly-Sensitive, and Fast-Responsive Optical Fiber Temperature Sensor Based on the Sealed Ethanol in Liquid State Up to its Supercritical Temperature. IEEE Photonics J. 2019 , 11 , 6803112. [ Google Scholar ] [ CrossRef ]
  • Scott, T.A., Jr. Refractive index of ethanol-water mixtures and density and refractive index of ethanol-water-ethyl ether mixtures. J. Phys. Chem. 1946 , 50 , 406–412. [ Google Scholar ] [ CrossRef ]
  • Wang, B.; Niu, Y.; Zheng, S.; Yin, Y.; Ding, M. A high temperature sensor based on sapphire fiber Fabry-Perot interferometer. IEEE Photonics Technol. Lett. 2019 , 32 , 89–92. [ Google Scholar ] [ CrossRef ]
  • Cui, Y.; Jiang, Y.; Zhang, Y.; Feng, X.; Hu, J.; Jiang, L. An all-sapphire fiber temperature sensor for high-temperature measurement. Meas. Sci. Technol. 2022 , 33 , 105115. [ Google Scholar ] [ CrossRef ]
  • Lupi, C.; Felli, F.; Ippoliti, L.; Caponero, M.; Ciotti, M.; Nardelli, V.; Paolozzi, A. Metal coating for enhancing the sensitivity of fibre Bragg grating sensors at cryogenic temperature. Smart Mater. Struct. 2005 , 14 , N71. [ Google Scholar ] [ CrossRef ]
  • Lupi, C.; Felli, F.; Brotzu, A.; Caponero, M.A.; Paolozzi, A. Improving FBG sensor sensitivity at cryogenic temperature by metal coating. IEEE Sens. J. 2008 , 8 , 1299–1304. [ Google Scholar ] [ CrossRef ]
  • Yang, J.; Yin, B.; Dong, X.; Huang, W.; Zou, Y. Ultrasensitive Cryogenic Temperature Sensor Based on a Metalized Optical Fiber Fabry-Perot Interferometer. J. Light. Technol. 2022 , 40 , 5729–5735. [ Google Scholar ] [ CrossRef ]
  • Kaushik, S.; Tiwari, U.; Nilima; Prashar, S.; Das, B.; Sinha, R.K. Label-free detection of Escherichia coli bacteria by cascaded chirped long period gratings immunosensor. Rev. Sci. Instrum. 2019 , 90 , 025003. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Eftimov, T.; Janik, M.; Koba, M.; Smietana, M.; Mikulic, P.; Bock, W. Long-Period Gratings and Microcavity In-Line Mach Zehnder Interferometers as Highly Sensitive Optical Fiber Platforms for Bacteria Sensing. Sensors 2020 , 20 , 3772. [ Google Scholar ] [ CrossRef ]
  • Sirkis, T.; Beiderman, Y.; Agdarov, S.; Beiderman, Y.; Zalevsky, Z. Fiber sensor for non-contact estimation of vital bio-signs. Opt. Commun. 2017 , 391 , 63–67. [ Google Scholar ] [ CrossRef ]
  • Yu, C.; Xu, W.; Zhang, N.; Yu, C. Non-invasive smart health monitoring system based on optical fiber interferometers. In Proceedings of the 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017. [ Google Scholar ]
  • Gasparyan, V.K.; Bazukyan, I.L. Lectin sensitized anisotropic silver nanoparticles for detection of some bacteria. Anal. Chim. Acta 2013 , 766 , 83–87. [ Google Scholar ] [ CrossRef ]
  • Arcas, A.d.S.; Dutra, F.d.S.; Allil, R.C.; Werneck, M.M. Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors. Sensors 2018 , 18 , 648. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Queiros, R.B.; Silva, S.O.; Noronha, J.P.; Frazao, O.; Jorge, P.; Aguilar, G.; Marques, P.V.S.; Sales, M.G.F. Microcystin-LR detection in water by the Fabry-Perot interferometer using an optical fibre coated with a sol-gel imprinted sensing membrane. Biosens. Bioelectron. 2011 , 26 , 3932–3937. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Chen, L.H.; Chan, C.C.; Menon, R.; Balamurali, P.; Wong, W.C.; Ang, X.M.; Hu, P.B.; Shaillender, M.; Neu, B.; Zu, P.; et al. Fabry-Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane. Sens. Actuators B Chem. 2013 , 188 , 185–192. [ Google Scholar ] [ CrossRef ]
  • Liu, X.; Jiang, M.; Dong, T.; Sui, Q.; Geng, X. Label-Free Immunosensor Based on Optical Fiber Fabry-Perot Interferometer. IEEE Sens. J. 2016 , 16 , 7515–7520. [ Google Scholar ] [ CrossRef ]
  • Li, Y.; Dong, B.; Chen, E.; Wang, X.; Zhao, Y.; Zhao, W.; Wang, Y. Breathing process monitoring with a biaxially oriented polypropylene film based fiber Fabry-Perot sensor. Opt. Commun. 2020 , 475 , 126292. [ Google Scholar ] [ CrossRef ]
  • Shrivastav, A.M.; Gunawardena, D.S.; Liu, Z.; Tam, H.-Y. Microstructured optical fiber based Fabry-Perot interferometer as a humidity sensor utilizing chitosan polymeric matrix for breath monitoring. Sci. Rep. 2020 , 10 , 6002. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Sergeev, A.; Voznesenskiy, S. Specific features of chitosan waveguides optical response formation to changes in the values of relative humidity. Opt. Mater. 2015 , 43 , 33–35. [ Google Scholar ] [ CrossRef ]
  • Li, X.; Li, F.; Zhou, X.; Zhang, Y.; Linh Viet, N.; Warren-Smith, S.C.; Zhao, Y. Optical Fiber DNA Biosensor with Temperature Monitoring Based on Double Microcavities FabryPerot Interference and Vernier Combined Effect. IEEE Trans. Instrum. Meas. 2023 , 72 , 7001208. [ Google Scholar ]
  • Zou, X.; Wu, N.; Tian, Y.; Ouyang, J.; Barringhaus, K.; Wang, X. Miniature Fabry–Perot fiber optic sensor for intravascular blood temperature measurements. IEEE Sens. J. 2013 , 13 , 2155–2160. [ Google Scholar ] [ CrossRef ]
  • Viphavakit, C.; O’Keeffe, S.; Yang, M.; Andersson-Engels, S.; Lewis, E. Gold Enhanced Hemoglobin Interaction in a Fabry-Perot Based Optical Fiber Sensor for Measurement of Blood Refractive Index. J. Light. Technol. 2018 , 36 , 1118–1124. [ Google Scholar ] [ CrossRef ]
  • Li, Y.; Dong, B.; Chen, E.; Wang, X.; Zhao, Y. Heart-Rate Monitoring with an Ethyl Alpha-Cyanoacrylate Based Fiber Fabry-Perot Sensor. IEEE J. Sel. Top. Quantum Electron. 2021 , 27 , 5600206. [ Google Scholar ] [ CrossRef ]
MaterialSensitivityTest RangeReference
Silicon9.48 pm/kPa0~200 kPa[ ]
11 nm/kPa0~100 kPa[ ]
12.4 nm/kPa6.9~48.3 kPa[ ]
PDMS100 pm/kPa100~175 kPa[ ]
52.143 nm/Mpa0.1~0.7 Mpa[ ]
20.63 nm/Mpa0~2 MPa[ ]
55 pm/mBar0~50 mBar[ ]
UV395 pm/kPa0~30 kPa[ ]
57.3 mV/Pa21.4 mPa~3.56 Pa[ ]
AB epoxy glue263.15 pm/kPa100.0 ~400.0 kPa[ ]
Graphene39.4 nm/kPa0~5 kPa[ ]
1.28 nm/mmHg0~100 mmHg[ ]
Silver1.6 nm/kPa0~50 psi[ ]
Gold19.5 nm/kPa0~100 kPa[ ]
MaterialSensitivity (pm/mT)Test Range (mT)Reference
MF2688.11.55~13.97[ ]
−42,191.510.96~12.58[ ]
10,260.211.8768~16.6261[ ]
Mn O -PDMS563.20~4[ ]
Magnetic alloy−34.830~70[ ]
Terfenol-D14.610~30[ ]
−75304~10[ ]
MaterialSensitivity (nm/RIU)Reference
SiO/TiO1130.887[ ]
Silver1025[ ]
UV156.8[ ]
UV8824.678[ ]
NOA6881.096[ ]
Loctite 352534.395[ ]
MaterialSensitivity (nm/%RH)Range (%RH)Reference
PMMA0.174725~80[ ]
0.12735~85[ ]
0.417210~70[ ]
PAM0.138~78[ ]
5.86888~98[ ]
Agarose gel0.022543~63[ ]
PNIPAM1.63445~75[ ]
POLYIMIDE0.0220720~90[ ]
PVDF0.0325420~80[ ]
PVA0.00145435~85[ ]
PAA0.3120~90[ ]
Graphene oxide0.210~90[ ]
MaterialSensitivity (pm/ppm)Range (ppm)Reference
PEI/PVA0.28176,000~869,000(CO )[ ]
PHMB1.220–700 (CO )[ ]
PCG21.610~70 (CO)[ ]
G-FPI
FG-FPI
250~150 (NH )[ ]
360~150 (NH )[ ]
MaterialSensitivityTest RangeReference
Silicon142.02 nm/°C−20~70 °C[ ]
6.07 nm/°C−50~100 °C[ ]
PDMS10.29 nm/°C44~49 °C[ ]
62 pm/°C20~170 °C[ ]
PI18.910 nm/°C24~43 °C[ ]
Ethanol−497.6 pm/°C20~180 °C[ ]
Sapphire20.63 pm/°C(at 500 °C)25~1550 °C[ ]
26.25 pm/°C (at 1000 °C)25~1550 °C[ ]
32.45 pm/°C (at 1550 °C)25~1550 °C[ ]
Cu/Al O 2.10 nm/K5.367~15.069 K[ ]
1.95 nm/K15~50 K[ ]
7.73 nm/K96.5~142.69 K[ ]
5.33 nm/K150.19~200.36 K[ ]
4.35 nm/K250.18~290.98 K[ ]
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Ma, C.; Peng, D.; Bai, X.; Liu, S.; Luo, L. A Review of Optical Fiber Sensing Technology Based on Thin Film and Fabry–Perot Cavity. Coatings 2023 , 13 , 1277. https://doi.org/10.3390/coatings13071277

Ma C, Peng D, Bai X, Liu S, Luo L. A Review of Optical Fiber Sensing Technology Based on Thin Film and Fabry–Perot Cavity. Coatings . 2023; 13(7):1277. https://doi.org/10.3390/coatings13071277

Ma, Chaoqun, Donghong Peng, Xuanyao Bai, Shuangqiang Liu, and Le Luo. 2023. "A Review of Optical Fiber Sensing Technology Based on Thin Film and Fabry–Perot Cavity" Coatings 13, no. 7: 1277. https://doi.org/10.3390/coatings13071277

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Recent Advances in Fiber Optics Components for High Speed Data Transmission

  • Conference paper
  • Cite this conference paper

research paper on fiber optic technology

  • Branko Leskovar 3  

460 Accesses

1 Citations

The concept of guided lightwave communication along optical fibers has stimulated a major new technology over the past two decades. This technology profoundly impacts communication and instrumentation systems as well as computer interconnections and system architecture.

In this paper the state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized for optical data transmission systems operating between 100 Mbit/s and 2.5 Gbit/s. Emphasis is placed on high speed data transmission subassemblies, such as time division multiplexers and demultiplexers, clock and data recovery circuits, as well as optical transmitters and receivers. In addition, the performance of candidate components of the wide band digital transmission systems intended for deployment in large detection systems for particle physics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

Similar content being viewed by others

research paper on fiber optic technology

Optical Transmission Technologies

research paper on fiber optic technology

Optical Fibers

research paper on fiber optic technology

The Future of Optical Communications

K. Nakagawa, K. Hagimoto, and S. Nishi, “Optical Bit Rate Flexible Transmission Experiment over 10 Gbit/s 375 km Employing In-line Fiber Amplifiers,” Technical Digest of Optical Fiber Communication Conference , Paper WC2, pp. 56–57, Optical Society of America, 1990.

Google Scholar  

I. W. Marshall, D. M. Spirit, G. N. Brown and L. C. Blank, “20 Gbit/s 100 km Nonlinear Transmission with Semiconductor Source,” Technical Digest of Optical Fiber Communication Conference , Paper PD6, pp. 261–264, Optical Society of America, 1990.

B. Leskovar, “Optical Receivers for Wide Band Data Transmission Systems,” IEEE Transactions on Nuclear Science , Vol. 36, No. 1, pp. 787–793, February 1989.

Article   Google Scholar  

B. Leskovar, “Radiation Effects on Optical Data Transmission Systems,” IEEE Transactions on Nuclear Science , Vol. 36, No. 1, pp. 543–551, February 1989.

B. Leskovar, “Optical Data Transmission at the Superconducting Super Collider,” IEEE Transactions on Nuclear Science , Vol. 37, No. 2, pp. 271–287, April 1990.

B. Leskovar, “High Speed Data Transmission at the Superconducting Super Collider,” Lawrence Berkeley Laboratory, Report LBL 28927 , April 23, 1990 Presented at the IEEE Nuclear Science Symposium, Arlington, Virginia, October 22–27, 1990.

Gibabit Logic, Inc., 1908 Oak Terrace Lane, Newbury Park, California 91320.

M. Ida, N. Kato, and T. Takada, “A 4-Gbit/s GaAs 16:1 Multiplexer/1:16 Demultiplexer LSI CHIP,” IEEE Journal of Solid-State Circuits , Vol. 24, No. 4, pp. 928–932, August 1989.

C. T. Chang, D. J. Albares, G. P. Imthurn, T. R. Ogden, M. J. Taylor and G. A. Garcia, “Optoelectronic Switches and Multigigabit 8:1 Time Multiplexer,” IEEE Transactions on Electron Devices , Vol. 37, No. 9, pp. 1969–1975, September 1990.

H. M. Rein, “Silicon Bipolar Integrated Circuits for Multigigabit per Second Lightwave Communications,” Technical Digest of Optical Fiber Communication Conference , Paper WF2, p. 67, Optical Society of America 1990.

Gazelle Microcircuits, Inc. 2300 Owen Street, Santa Clara, California 95054.

R. C. Walker, T. Hornak, C. S. Yen, J. Doernberg and K. Springer, “A 1.5 Gbit/s Link Interface Chipset for Computer Data Transmission,” Hewlett-Packard Instruments and Photonics Laboratory, 1501 Page Mill Road, Palo Alto, California 94303. To be published in IEEE Journal on Selected Areas in Communication, 1991.

Advanced Micro Devices, Inc., 901 Thomson Place, P.O. Box 3453, Sunnyvale, California 94088.

AT&T Microelectronics, Dept. 50 AL 330240, 555 Union Boulevard, Allentown, Pennsylvania 18103.

S. E. Miller and I. P. Kaminov, Eds. “Optical Fiber Telecommunications II,” Academic Press, Inc., 1988.

E. W. Taylor, E. J. Friebele, H. Henschel, R. H. West, J. A. Krinsky and C E. Barnes, “Interlaboratory Comparison of Radiation-Induced Attenuation in Optical Fibers. Part II: Steady-State Exposures,” Journal of Lightwave Technology , Vol. 8, No. 6, pp. 967–976, June 1990.

E. J. Friebele, P. B. Lyons, J. Blackburn, H. Henschel, A. Johan, J. A. Krinsky, A. Robinson, W. Schneider, D. Smith, E. W. Taylor, G. Y. Turquet de Beauregard, R. H. West and P. Zagarino, “Interlaboratory Comparison of Radiation-Induced Attenuation in Optical Fibers. Part III: Transient Exposures” Journal of Lightwave Technology , Vol. 8, No. 6, pp. 977–989, June 1990.

Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, T. Matsubara, S. Okamoto, T. Yamamoto, T. Iida and K. Sumita, “γ-ray and Neutron Irradiation Characteristics of Pure Silica Core Single Mode Fiber and its Lifetime Estimation,” IEEE Transactions on Nuclear Science , Vol. 35, No. 1, pp. 894–897, February 1988.

AT&T Network Systems, 505 North 51st Avenue, Phoenix, Arizona 85043.

T. W. Cline, J. M. Delavoux, S. W. Granlund, C. Y. Kuo, B. Owen, Y. K. Park, T. C. Pleiss, R. S. Riggs, R. E. Tench, L. D. Tzeng, E. J. Wagner, N. K. Dutte, Y. Twu, P. Van Eijk, “A 1.7G bit/s Coherent FSK Heterodyne System,” Technical Digest of Optical Fiber Communication Conference , Paper FD5, p. 209, Optical Society of America, 1990.

Hewlett-Packard Components, Bldg. 49AV, 19310 Pruneridge Avenue, Cupertino, California 95014.

British Telecom & Du Pont Technologies, Delaware Corporate Center, Suite 200, 2 Righter Parkway, Wilmington, Delaware 19803.

Siemens AG, Fiber Optic Components, Group of Pottter & Brumfield, P.O. Box 4757, 3846 First Avenue, Evansville, Indiana 47724.

Sumitomo Electric Fiber Optics Corp., 777 Old Saw Mill River Road, Suite 230, Tarrytown, New York 10591.

National Semiconductor Corporation, 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052.

Vitesse Semiconductor Corporation, 741 Calle Piano, Camarillo, California 93010.

Download references

Author information

Authors and affiliations.

Engineering Division, Lawrence Berkeley Laboratory, Once Cyclotron Road, Berkeley, California, 94720, USA

Branko Leskovar

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Instituts für Medizinische Optik, Universität München, Deutschland

Wilhelm Waidelich ( Universitätsprofessor, em. Vorstand, em. Direktor ) ( Universitätsprofessor, em. Vorstand, em. Direktor )

Instituts für Angewandte Optik der Gesellschaft für Strahlen- und Umweltforschung, Neuherberg, Deutschland

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper.

Leskovar, B. (1992). Recent Advances in Fiber Optics Components for High Speed Data Transmission. In: Waidelich, W. (eds) Laser in der Technik / Laser in Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84736-3_105

Download citation

DOI : https://doi.org/10.1007/978-3-642-84736-3_105

Publisher Name : Springer, Berlin, Heidelberg

Print ISBN : 978-3-540-55247-5

Online ISBN : 978-3-642-84736-3

eBook Packages : Springer Book Archive

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IEEE Account

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IMAGES

  1. (PDF) Comparative Study Between Fiber Optic And Copper In Communication

    research paper on fiber optic technology

  2. (PDF) Review of Optical Fibers-Introduction and Applications in Fiber

    research paper on fiber optic technology

  3. Detailed analysis of fiber optic networks and its benefits in defense…

    research paper on fiber optic technology

  4. Fiber-Optic Sensing: Leveraging three decades of fiber Bragg grating

    research paper on fiber optic technology

  5. (PDF) Lab Report Fiber Optics

    research paper on fiber optic technology

  6. Optical Fibre And its Application

    research paper on fiber optic technology

VIDEO

  1. Fiber Optic Cable Paper

  2. Fiber Optic technology is the backbone of modern communication

  3. Fiber Optic Technology In The Video Production World

  4. waterproof fiber optic paper,12 c adss double jacket

  5. ARCHIVE: Digital substation by Profotech and LYSIS

  6. Fiber Optic Technology course for the first time in Palestine, organized by JDECO

COMMENTS

  1. A Survey of Optical Fiber Communications: Challenges and...

    This paper offers an outline of the areas to be the most relevant for the future advancement of optical communications. The invention of integrated optics and modern optical fibers takes...

  2. Optical Fiber Technology | Journal | ScienceDirect.com by ...

    Fiber nonlinearities and countermeasures • Long-haul transmission systems • Fiber local area networks • Fiber sensors and instrumentation. The journal provides valuable information for engineers and researchers in optical fiber technology, in both industry and academia.

  3. Fibre optics and optical communications - Latest research and ...

    Fibre optics and optical communications is the use of thin strands of glass for sending information encoded into light over long distances. Total internal reflection prevents light inserted...

  4. A Review of Optical Fiber Sensing Technology Based on Thin ...

    The research on fiber optic FP cavity sensors and thin film provides essential technical support for achieving high-precision and high-sensitivity monitoring of environmental parameters, opening up new possibilities for scientific research and engineering applications across various domains.

  5. Recent Advances in Fiber Optics Components for High Speed ...

    In this paper the state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized for optical data transmission systems operating between 100 Mbit/s and 2.5 Gbit/s.

  6. Optical communications research and technology: Fiber optics

    Abstract: The current state of the art of fiber optics components is reviewed and projected uses of fiber optical technology are detailed. A brief discussion is presented describing the fundamentals of light guiding and the factors which affect the performance of light guides.

  7. Fiber‐Optic Sensing for Environmental Applications: Where We ...

    Key Points. Environmental applications of fiber-optic distributed temperature sensing (FO-DTS) have increased since 2006. Improvements in instrumentation, calibration, field methods, and analysis have slowed as FO-DTS has matured to become a mainstream tool in environmental applications.