loading

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Biology archive

Course: biology archive   >   unit 1, the scientific method.

  • Controlled experiments
  • The scientific method and experimental design

scientific method problem solving examples at home

Introduction

  • Make an observation.
  • Ask a question.
  • Form a hypothesis , or testable explanation.
  • Make a prediction based on the hypothesis.
  • Test the prediction.
  • Iterate: use the results to make new hypotheses or predictions.

Scientific method example: Failure to toast

1. make an observation., 2. ask a question., 3. propose a hypothesis., 4. make predictions., 5. test the predictions..

  • If the toaster does toast, then the hypothesis is supported—likely correct.
  • If the toaster doesn't toast, then the hypothesis is not supported—likely wrong.

Logical possibility

Practical possibility, building a body of evidence, 6. iterate..

  • If the hypothesis was supported, we might do additional tests to confirm it, or revise it to be more specific. For instance, we might investigate why the outlet is broken.
  • If the hypothesis was not supported, we would come up with a new hypothesis. For instance, the next hypothesis might be that there's a broken wire in the toaster.

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Incredible Answer

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science Fair Project Ideas for Kids, Middle & High School Students ⋅
  • Probability & Statistics

How to Use the Scientific Method in Everyday Life

The scientific method can help solve problems you encounter in your everyday surroundings.

How to Set Up a Controlled Science Experiment

The scientific method is a procedure consisting of a series of steps with the goal of problem-solving and information-gathering. The scientific method begins with the recognition of a problem and a clear elaboration or description of the problem itself. A process of experimentation and data collection then follows. The final steps consist of the formulation and testing of a hypothesis or potential solution and conclusion. For people unaccustomed to using the scientific method, the process may seem abstract and unapproachable. With a little consideration and observation, any problem encountered in daily life is a potential possibility to use the scientific method.

Identify the problem you're trying to solve.

Locate or identify a problem to solve. Your personal environment is a good place to start, either in the workplace, the home, or your town or city.

Think about the problem in detail.

Describe the problem in detail. Make quantifiable observations, such as number of times of occurrence, duration, specific physical measurements, and so on.

Form a hypothesis about what the possible cause of the problem might be.

Form a hypothesis about what the possible cause of the problem might be, or what a potential solution could be. Check if the previously collected data suggests a pattern or possible cause.

Test your hypothesis through further observation or by creating an experiment.

Test your hypothesis either through further observation of the problem or by creating an experiment that highlights the aspect of the problem you wish to test. For example, if you suspect a faulty wire is the cause of a light not working, you must find a way to isolate and test whether or not the wire is actually the cause.

Consider using household repairs when using the scientific method.

Repeat the steps of observation, hypothesis formation and testing until you reach a conclusion that is reinforced by supporting data or directly solves the problem at hand.

  • The scientific method is best suited to solving problems without direct or simple answers. For example, a light bulb that burns out may simply need to be replaced. A light bulb that works intermittently is a much more suitable candidate for use of the scientific method, because of all of the potential causes of it not working.

Related Articles

What is the next step if an experiment fails to confirm..., steps & procedures for conducting scientific research, how to calculate a p-value, advantages & disadvantages of finding variance, what are the 8 steps in scientific research, how to make a simple circuit, how to do exponents outside of the parenthesis, how to dispose of lead aprons, how do humans cause erosion, science project ideas & the scientific method, how to check my math answers, how to find a number pattern, how to test for potassium iodide, how to find the domain of a fraction, how to find b in y=mx + b, how to make geometry proofs easier, definition of a land ecosystem, how to interpret a student's t-test results, different kinds of probability.

  • Britannica Online Encyclopedia: Scientific Method; June 2011

About the Author

Alex Jakubik began his writing career in 2000 with book-cover summaries for Barnes & Noble. He has also authored concert programs and travel blogs, and worked both nationally and internationally in the arts. Jakubik holds a Bachelor of Music degree from Indiana University and a Master of Music from Yale University.

Photo Credits

Alexander Raths/iStock/Getty Images

Find Your Next Great Science Fair Project! GO

Login to your account

Change password, your password must have 8 characters or more and contain 3 of the following:.

  • a lower case character, 
  • an upper case character, 
  • a special character 

Password Changed Successfully

Your password has been changed

Create a new account

Can't sign in? Forgot your password?

Enter your email address below and we will send you the reset instructions

If the address matches an existing account you will receive an email with instructions to reset your password

Request Username

Can't sign in? Forgot your username?

Enter your email address below and we will send you your username

If the address matches an existing account you will receive an email with instructions to retrieve your username

World Scientific

  •   
  • Institutional Access

Cookies Notification

CONNECT Login Notice

Our site uses Javascript to enchance its usability. You can disable your ad blocker or whitelist our website www.worldscientific.com to view the full content.

Select your blocker:, adblock plus instructions.

  • Click the AdBlock Plus icon in the extension bar
  • Click the blue power button
  • Click refresh

Adblock Instructions

  • Click the AdBlock icon
  • Click "Don't run on pages on this site"

uBlock Origin Instructions

  • Click on the uBlock Origin icon in the extension bar
  • Click on the big, blue power button
  • Refresh the web page

uBlock Instructions

  • Click on the uBlock icon in the extension bar

Adguard Instructions

  • Click on the Adguard icon in the extension bar
  • Click on the toggle next to the "Protection on this website" text

Brave Instructions

  • Click on the orange lion icon to the right of the address bar
  • Click the toggle on the top right, shifting from "Up" to "Down

Adremover Instructions

  • Click on the AdRemover icon in the extension bar
  • Click the "Don’t run on pages on this domain" button
  • Click "Exclude"

Adblock Genesis Instructions

  • Click on the Adblock Genesis icon in the extension bar
  • Click on the button that says "Whitelist Website"

Super Adblocker Instructions

  • Click on the Super Adblocker icon in the extension bar
  • Click on the "Don’t run on pages on this domain" button
  • Click the "Exclude" button on the pop-up

Ultrablock Instructions

  • Click on the UltraBlock icon in the extension bar
  • Click on the "Disable UltraBlock for ‘domain name here’" button

Ad Aware Instructions

  • Click on the AdAware icon in the extension bar
  • Click on the large orange power button

Ghostery Instructions

  • Click on the Ghostery icon in the extension bar
  • Click on the "Trust Site" button

Firefox Tracking Protection Instructions

  • Click on the shield icon on the left side of the address bar
  • Click on the toggle that says "Enhanced Tracking protection is ON for this site"

Duck Duck Go Instructions

  • Click on the DuckDuckGo icon in the extension bar
  • Click on the toggle next to the words "Site Privacy Protection"

Privacy Badger Instructions

  • Click on the Privacy Badger icon in the extension bar
  • Click on the button that says "Disable Privacy Badger for this site"

Disconnect Instructions

  • Click on the Disconnect icon in the extension bar
  • Click the button that says "Whitelist Site"

Opera Instructions

  • Click on the blue shield icon on the right side of the address bar
  • Click the toggle next to "Ads are blocked on this site"

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Solving Everyday Problems with the Scientific Method cover

Solving Everyday Problems with the Scientific Method

  • By (author): 
  • Don K Mak , 
  • Angela T Mak , and 
  • Anthony B Mak
  • Add to favorites
  • Download Citations
  • Track Citations
  • Recommend to Library
  • Description
  • Supplementary

This book describes how one can use The Scientific Method to solve everyday problems including medical ailments, health issues, money management, traveling, shopping, cooking, household chores, etc. It illustrates how to exploit the information collected from our five senses, how to solve problems when no information is available for the present problem situation, how to increase our chances of success by redefining a problem, and how to extrapolate our capabilities by seeing a relationship among heretofore unrelated concepts.

One should formulate a hypothesis as early as possible in order to have a sense of direction regarding which path to follow. Occasionally, by making wild conjectures, creative solutions can transpire. However, hypotheses need to be well-tested. Through this way, The Scientific Method can help readers solve problems in both familiar and unfamiliar situations. Containing real-life examples of how various problems are solved — for instance, how some observant patients cure their own illnesses when medical experts have failed — this book will train readers to observe what others may have missed and conceive what others may not have contemplated. With practice, they will be able to solve more problems than they could previously imagine.

Sample Chapter(s) Chapter 1: Prelude (83 KB) Chapter 2: The Scientific Method (173 KB)

  • The Scientific Method

Observation

Recognition, problem situation and problem definition, induction and deduction, alternative solutions, mathematics, probable value.

  • Demonstrates how to cope with problems in both familiar and unfamiliar situations, using The Scientific Method
  • Redefines problems by viewing the problem situation from different levels and perspectives
  • Formulates solution methodology by borrowing ideas from economics, philosophy, logic, statistics, probability theory and scientific research
  • Offers test-driven recommendations, supported with real-life examples

Type on 09/06/2008

Updated pp & pub date on 7/1/2009

Added s/c updated to systems price on 09/11/2009

Added review on 14/10/2010

Added review on 7/3/2011

FRONT MATTER

  • Pages: i–xiii

https://doi.org/10.1142/9789812835109_fmatter

  • Claimers and Disclaimers

https://doi.org/10.1142/9789812835109_0001

The father put down the newspaper. It had been raining for the last two hours. The rain finally stopped, and the sky looked clear. After all this raining, the negative ions in the atmosphere would have increased, and the air would feel fresh. The father suggested the family of four should go for a stroll. There was a park just about fifteen minutes walk from their house…

  • Pages: 3–16

https://doi.org/10.1142/9789812835109_0002

  • Edwin Smith papyrus
  • Greek philosophy (4 th century BC)
  • Islamic philosophy (8 th century AD–15 th century AD)
  • European Science (12 th century AD–16 th century AD)
  • Scientific Revolution (1543 AD–18 th century AD)
  • Humanism and Empiricism
  • Application of the Scientific Method to Everyday Problem
  • Pages: 17–44

https://doi.org/10.1142/9789812835109_0003

  • Missed information
  • Misinformation
  • Hidden information
  • No information
  • Unaware information
  • Evidence-based information
  • Self-denied information
  • Biased information
  • Unexploited information
  • Peripheral information
  • Pages: 45–63

https://doi.org/10.1142/9789812835109_0004

  • Wild conjectures
  • Albert Einstein (1879–1955)
  • Pages: 65–82

https://doi.org/10.1142/9789812835109_0005

  • Experiment versus hypothesis
  • Platonic, Aristotelian, Baconian, and Galilean methodology
  • Pages: 83–95

https://doi.org/10.1142/9789812835109_0006

  • John Nash (1928– )
  • Pages: 97–105

https://doi.org/10.1142/9789812835109_0007

  • Perspectives on different levels
  • Perspectives on the same level
  • Pages: 107–117

https://doi.org/10.1142/9789812835109_0008

  • Pages: 119–138

https://doi.org/10.1142/9789812835109_0009

  • Lotion bottle with a pump dispenser
  • Pages: 139–167

https://doi.org/10.1142/9789812835109_0010

  • Ordinary thinking
  • Unconscious mind
  • Genetic material
  • Watson and Crick at Cavendish Laboratory, Cambridge
  • Rosalind Franklin at King's College, London
  • The triple helix model
  • The double helix model
  • Creative thinking and Ordinary thinking
  • Scientific Research and Scientific Method
  • Can we be more creative?
  • Pages: 169–194

https://doi.org/10.1142/9789812835109_0011

Mathematics, even some simple arithmetic, is so important in solving some of the everyday problems, that we think a whole chapter should be written on it.

Let us take a look at an example. When we see an advertisement which says "Buy one, get the second one at half price", we should be able to figure out what exactly does it mean, and how much discount are we actually getting. Is it a better deal than another company that advertises 30% off?…

  • Pages: 195–207

https://doi.org/10.1142/9789812835109_0012

For a certain problem, we may come up with several plausible solutions. Which path should we take? Each path would only have certain chance or probability of success in resolving the problem. If each path or solution has a different reward, we can define the probable value of each path to be the multiplication of the reward by the probability. We should, most likely, choose the path that has the highest probable value. (The term "probable value" is coined by us. The idea is appropriated from the term "expected value" in Statistics. In this sense, expected value can be considered as the sum of all probable values.)…

  • Pages: 209–212

https://doi.org/10.1142/9789812835109_0013

We run into problems every day. Even when we do not encounter any problems, it does not mean that they do not exist. Sometimes, we wish we could be able to recognize them earlier. The scientific method of observation, hypothesis, and experiment can help us recognize, define, and solve our problems…

BACK MATTER

  • Pages: 213–220

https://doi.org/10.1142/9789812835109_bmatter

  • Bibliography

scientific method problem solving examples at home

Related Books

scientific method problem solving examples at home

Inspirations of a Nation

scientific method problem solving examples at home

Fivefold Symmetry

scientific method problem solving examples at home

In the Wings of Physics

scientific method problem solving examples at home

A Scientist Speaks Out

scientific method problem solving examples at home

An Outline of Scientific Writing

scientific method problem solving examples at home

The Science of Financial Market Trading

scientific method problem solving examples at home

The Road to Scientific Success

scientific method problem solving examples at home

Mathematical Techniques in Financial Market Trading

scientific method problem solving examples at home

Scientific Writing: A Reader and Writer's Guide

scientific method problem solving examples at home

A Second Genesis

scientific method problem solving examples at home

When the Scientist Presents

scientific method problem solving examples at home

The Tools of Science

scientific method problem solving examples at home

Exercise Personal Training 101

scientific method problem solving examples at home

Science Sifting

scientific method problem solving examples at home

Enjoy Writing Your Science Thesis or Dissertation!

scientific method problem solving examples at home

The Grant Writer's Handbook

scientific method problem solving examples at home

Survival Skills for Scientists

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

The 6 Scientific Method Steps and How to Use Them

author image

General Education

feature_microscope-1

When you’re faced with a scientific problem, solving it can seem like an impossible prospect. There are so many possible explanations for everything we see and experience—how can you possibly make sense of them all? Science has a simple answer: the scientific method.

The scientific method is a method of asking and answering questions about the world. These guiding principles give scientists a model to work through when trying to understand the world, but where did that model come from, and how does it work?

In this article, we’ll define the scientific method, discuss its long history, and cover each of the scientific method steps in detail.

What Is the Scientific Method?

At its most basic, the scientific method is a procedure for conducting scientific experiments. It’s a set model that scientists in a variety of fields can follow, going from initial observation to conclusion in a loose but concrete format.

The number of steps varies, but the process begins with an observation, progresses through an experiment, and concludes with analysis and sharing data. One of the most important pieces to the scientific method is skepticism —the goal is to find truth, not to confirm a particular thought. That requires reevaluation and repeated experimentation, as well as examining your thinking through rigorous study.

There are in fact multiple scientific methods, as the basic structure can be easily modified.  The one we typically learn about in school is the basic method, based in logic and problem solving, typically used in “hard” science fields like biology, chemistry, and physics. It may vary in other fields, such as psychology, but the basic premise of making observations, testing, and continuing to improve a theory from the results remain the same.

body_history

The History of the Scientific Method

The scientific method as we know it today is based on thousands of years of scientific study. Its development goes all the way back to ancient Mesopotamia, Greece, and India.

The Ancient World

In ancient Greece, Aristotle devised an inductive-deductive process , which weighs broad generalizations from data against conclusions reached by narrowing down possibilities from a general statement. However, he favored deductive reasoning, as it identifies causes, which he saw as more important.

Aristotle wrote a great deal about logic and many of his ideas about reasoning echo those found in the modern scientific method, such as ignoring circular evidence and limiting the number of middle terms between the beginning of an experiment and the end. Though his model isn’t the one that we use today, the reliance on logic and thorough testing are still key parts of science today.

The Middle Ages

The next big step toward the development of the modern scientific method came in the Middle Ages, particularly in the Islamic world. Ibn al-Haytham, a physicist from what we now know as Iraq, developed a method of testing, observing, and deducing for his research on vision. al-Haytham was critical of Aristotle’s lack of inductive reasoning, which played an important role in his own research.

Other scientists, including Abū Rayhān al-Bīrūnī, Ibn Sina, and Robert Grosseteste also developed models of scientific reasoning to test their own theories. Though they frequently disagreed with one another and Aristotle, those disagreements and refinements of their methods led to the scientific method we have today.

Following those major developments, particularly Grosseteste’s work, Roger Bacon developed his own cycle of observation (seeing that something occurs), hypothesis (making a guess about why that thing occurs), experimentation (testing that the thing occurs), and verification (an outside person ensuring that the result of the experiment is consistent).

After joining the Franciscan Order, Bacon was granted a special commission to write about science; typically, Friars were not allowed to write books or pamphlets. With this commission, Bacon outlined important tenets of the scientific method, including causes of error, methods of knowledge, and the differences between speculative and experimental science. He also used his own principles to investigate the causes of a rainbow, demonstrating the method’s effectiveness.

Scientific Revolution

Throughout the Renaissance, more great thinkers became involved in devising a thorough, rigorous method of scientific study. Francis Bacon brought inductive reasoning further into the method, whereas Descartes argued that the laws of the universe meant that deductive reasoning was sufficient. Galileo’s research was also inductive reasoning-heavy, as he believed that researchers could not account for every possible variable; therefore, repetition was necessary to eliminate faulty hypotheses and experiments.

All of this led to the birth of the Scientific Revolution , which took place during the sixteenth and seventeenth centuries. In 1660, a group of philosophers and physicians joined together to work on scientific advancement. After approval from England’s crown , the group became known as the Royal Society, which helped create a thriving scientific community and an early academic journal to help introduce rigorous study and peer review.

Previous generations of scientists had touched on the importance of induction and deduction, but Sir Isaac Newton proposed that both were equally important. This contribution helped establish the importance of multiple kinds of reasoning, leading to more rigorous study.

As science began to splinter into separate areas of study, it became necessary to define different methods for different fields. Karl Popper was a leader in this area—he established that science could be subject to error, sometimes intentionally. This was particularly tricky for “soft” sciences like psychology and social sciences, which require different methods. Popper’s theories furthered the divide between sciences like psychology and “hard” sciences like chemistry or physics.

Paul Feyerabend argued that Popper’s methods were too restrictive for certain fields, and followed a less restrictive method hinged on “anything goes,” as great scientists had made discoveries without the Scientific Method. Feyerabend suggested that throughout history scientists had adapted their methods as necessary, and that sometimes it would be necessary to break the rules. This approach suited social and behavioral scientists particularly well, leading to a more diverse range of models for scientists in multiple fields to use.

body_experiment-3

The Scientific Method Steps

Though different fields may have variations on the model, the basic scientific method is as follows:

#1: Make Observations 

Notice something, such as the air temperature during the winter, what happens when ice cream melts, or how your plants behave when you forget to water them.

#2: Ask a Question

Turn your observation into a question. Why is the temperature lower during the winter? Why does my ice cream melt? Why does my toast always fall butter-side down?

This step can also include doing some research. You may be able to find answers to these questions already, but you can still test them!

#3: Make a Hypothesis

A hypothesis is an educated guess of the answer to your question. Why does your toast always fall butter-side down? Maybe it’s because the butter makes that side of the bread heavier.

A good hypothesis leads to a prediction that you can test, phrased as an if/then statement. In this case, we can pick something like, “If toast is buttered, then it will hit the ground butter-first.”

#4: Experiment

Your experiment is designed to test whether your predication about what will happen is true. A good experiment will test one variable at a time —for example, we’re trying to test whether butter weighs down one side of toast, making it more likely to hit the ground first.

The unbuttered toast is our control variable. If we determine the chance that a slice of unbuttered toast, marked with a dot, will hit the ground on a particular side, we can compare those results to our buttered toast to see if there’s a correlation between the presence of butter and which way the toast falls.

If we decided not to toast the bread, that would be introducing a new question—whether or not toasting the bread has any impact on how it falls. Since that’s not part of our test, we’ll stick with determining whether the presence of butter has any impact on which side hits the ground first.

#5: Analyze Data

After our experiment, we discover that both buttered toast and unbuttered toast have a 50/50 chance of hitting the ground on the buttered or marked side when dropped from a consistent height, straight down. It looks like our hypothesis was incorrect—it’s not the butter that makes the toast hit the ground in a particular way, so it must be something else.

Since we didn’t get the desired result, it’s back to the drawing board. Our hypothesis wasn’t correct, so we’ll need to start fresh. Now that you think about it, your toast seems to hit the ground butter-first when it slides off your plate, not when you drop it from a consistent height. That can be the basis for your new experiment.

#6: Communicate Your Results

Good science needs verification. Your experiment should be replicable by other people, so you can put together a report about how you ran your experiment to see if other peoples’ findings are consistent with yours.

This may be useful for class or a science fair. Professional scientists may publish their findings in scientific journals, where other scientists can read and attempt their own versions of the same experiments. Being part of a scientific community helps your experiments be stronger because other people can see if there are flaws in your approach—such as if you tested with different kinds of bread, or sometimes used peanut butter instead of butter—that can lead you closer to a good answer.

body_toast-1

A Scientific Method Example: Falling Toast

We’ve run through a quick recap of the scientific method steps, but let’s look a little deeper by trying again to figure out why toast so often falls butter side down.

#1: Make Observations

At the end of our last experiment, where we learned that butter doesn’t actually make toast more likely to hit the ground on that side, we remembered that the times when our toast hits the ground butter side first are usually when it’s falling off a plate.

The easiest question we can ask is, “Why is that?”

We can actually search this online and find a pretty detailed answer as to why this is true. But we’re budding scientists—we want to see it in action and verify it for ourselves! After all, good science should be replicable, and we have all the tools we need to test out what’s really going on.

Why do we think that buttered toast hits the ground butter-first? We know it’s not because it’s heavier, so we can strike that out. Maybe it’s because of the shape of our plate?

That’s something we can test. We’ll phrase our hypothesis as, “If my toast slides off my plate, then it will fall butter-side down.”

Just seeing that toast falls off a plate butter-side down isn’t enough for us. We want to know why, so we’re going to take things a step further—we’ll set up a slow-motion camera to capture what happens as the toast slides off the plate.

We’ll run the test ten times, each time tilting the same plate until the toast slides off. We’ll make note of each time the butter side lands first and see what’s happening on the video so we can see what’s going on.

When we review the footage, we’ll likely notice that the bread starts to flip when it slides off the edge, changing how it falls in a way that didn’t happen when we dropped it ourselves.

That answers our question, but it’s not the complete picture —how do other plates affect how often toast hits the ground butter-first? What if the toast is already butter-side down when it falls? These are things we can test in further experiments with new hypotheses!

Now that we have results, we can share them with others who can verify our results. As mentioned above, being part of the scientific community can lead to better results. If your results were wildly different from the established thinking about buttered toast, that might be cause for reevaluation. If they’re the same, they might lead others to make new discoveries about buttered toast. At the very least, you have a cool experiment you can share with your friends!

Key Scientific Method Tips

Though science can be complex, the benefit of the scientific method is that it gives you an easy-to-follow means of thinking about why and how things happen. To use it effectively, keep these things in mind!

Don’t Worry About Proving Your Hypothesis

One of the important things to remember about the scientific method is that it’s not necessarily meant to prove your hypothesis right. It’s great if you do manage to guess the reason for something right the first time, but the ultimate goal of an experiment is to find the true reason for your observation to occur, not to prove your hypothesis right.

Good science sometimes means that you’re wrong. That’s not a bad thing—a well-designed experiment with an unanticipated result can be just as revealing, if not more, than an experiment that confirms your hypothesis.

Be Prepared to Try Again

If the data from your experiment doesn’t match your hypothesis, that’s not a bad thing. You’ve eliminated one possible explanation, which brings you one step closer to discovering the truth.

The scientific method isn’t something you’re meant to do exactly once to prove a point. It’s meant to be repeated and adapted to bring you closer to a solution. Even if you can demonstrate truth in your hypothesis, a good scientist will run an experiment again to be sure that the results are replicable. You can even tweak a successful hypothesis to test another factor, such as if we redid our buttered toast experiment to find out whether different kinds of plates affect whether or not the toast falls butter-first. The more we test our hypothesis, the stronger it becomes!

What’s Next?

Want to learn more about the scientific method? These important high school science classes will no doubt cover it in a variety of different contexts.

Test your ability to follow the scientific method using these at-home science experiments for kids !

Need some proof that science is fun? Try making slime

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Melissa Brinks graduated from the University of Washington in 2014 with a Bachelor's in English with a creative writing emphasis. She has spent several years tutoring K-12 students in many subjects, including in SAT prep, to help them prepare for their college education.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

scientific method problem solving examples at home

Advertisement

How the Scientific Method Works

  • Share Content on Facebook
  • Share Content on LinkedIn
  • Share Content on Flipboard
  • Share Content on Reddit
  • Share Content via Email

scientific method

We hear about the scientific method all the time. Middle and high school students learn about it in science class and use it in research competitions. Advertisers use it to support claims about products ranging from vacuum cleaners to vitamins. And Hollywood portrays it by showing scientists with clipboards and lab coats standing behind microscopes and flasks filled with bubbling liquids.

So why does the scientific method remain such a mystery to so many people? One reason has to do with the name itself. The word "method" implies that there is some sacred formula locked in a vault — a formula available to highly trained scientists and no one else. This is absolutely untrue. The scientific method is something all of us use all of the time. In fact, engaging in the basic activities that make up the scientific method — being curious, asking questions, seeking answers — is a natural part of being human.

­In this article, we'll demystify the scientific method by breaking it down to its basic parts.

We'll explore how the scientific method can be used to solve everyday problems, but we'll also explain why it is so fundamentally critical to the physical and natural sciences. We'll also examine a few examples of how the method has been applied to make landmark discoveries and support groundbreaking theories . But let's start with a basic definition.

Ask a group of people to define "science," and you'll get a lot of different answers. Some will tell you it's a really difficult class wedged between social studies and math. Others will tell you it's a dusty book filled with Latin terms that no one can pronounce. And still others will say it's a useless collection of facts, figures and formulas. Unfortunately, most dictionaries don't shed any significant light on the subject. Here's a typical definition:

Sounds difficult, right? Not if we break this long-winded definition into its most important parts. By doing so, we'll achieve two things: First, we'll support the argument that science isn't mysterious or unattainable. Second, we'll demonstrate that the method of science is really no different than science itself.

Please copy/paste the following text to properly cite this HowStuffWorks.com article:

Microbe Notes

Microbe Notes

Scientific Method: Definition, Steps, Examples, Uses

Sir Francis Bacon, an English philosopher, developed modern scientific research and scientific methods. He is also known as “the Father of modern science.”

He was influenced by Galileo Galilei and Nicholas Copernicus’ writings throughout his study.

The scientific method is a powerful analytical or problem-solving method of learning more about the natural world.  

The scientific method is a combined method, which consists of theoretical knowledge and practical experimentation by using scientific instruments, analysis and comparisons of results, and then peer reviews.

Scientific Method

  • The scientific method is a procedure that the scientists use to conduct research.
  • Scientific investigators play a crucial role in following a series of steps such as asking questions, setting hypothesis to answer questions, performing multiple experiments to confirm the reliability of data/ results, data collection and interpretation, and developing conclusions based on the hypothesis.

Table of Contents

Interesting Science Videos

Steps of Scientific Method

There are seven steps of the scientific method such as:

  • Make an observation
  • Ask a question
  • Background research/ Research the topic
  • Formulate a hypothesis
  • Conduct an experiment to test the hypothesis
  • Data record and analysis
  • Draw a conclusion

1. Make an observation

  • Before asking a question, you need a proper observation to get information about some topic, which may help to identify the question. 
  • Proper observation in the area of investigation or about something you are interested in is required, whether you recognize it or not. 

2. Ask a question

  • The scientific method follows a step by asking a question. Based on what you observe, Asking questions starts with Wh- such as What, When, Who, Which, Why, How, Does or Where? 
  • A question helps to identify a core problem and form a hypothesis . The question should be relatable and specific as much as possible. 
  • Why is this thing happening?
  • What is the reason behind this?
  • How does this happen?
  • Does it need to happen?

3. Background research/ Research the topic

  • Background research on the experiment/ topic is necessary to analyze and answer the questions. 
  • Many scientists are employing various techniques and equipment, such as libraries and Internet research (research papers, articles, journals, etc.), that push how to investigate, design, and understand the experiment. 
  • In addition, you can learn from other experiences, research, or experiments, which helps you not repeat the same mistakes and be aware of doing things further. 
  • It helps to predict what will happen in the future. It also helps to understand the theory and background history of the experiment.

4. Formulate a hypothesis

  • A Hypothesis is an idea or a guess to explain a specific occurrence, natural event, or particular experience based on prior observation.
  • It is another step in the scientific method. A hypothesis allows you to make a prediction. Scientists predict what will be the outcome. 
  • It outlines the objectives of the experiment, the variables used, and the expected outcome of the experiment. The hypothesis must be either falsifiable or testable. It also answers the previous question. 
  • A hypothesis needs to be testable by gathering evidence. A hypothesis needs to be testable to perform an experiment, whether the evidence supports the hypothesis or not. 

5. Conduct an experiment to test a hypothesis

  • After formulating a hypothesis, you must design and conduct an experiment. Experiments are the process of investigations to prove or disprove the hypothesis.
  • Two variables play a crucial role in conducting experiments to test the hypothesis. 
  • They are Independent variables (Can be manipulated or controlled by the person, or you can change while experimenting) and dependent variables (one you measure, which may be affected by the independent variable).
  • They both are the cause and effect. The dependent variable is dependent on the independent variable. 
  • All the variables must be under control to ensure that they have no impact on the result.
  • You can also set another type of hypothesis, such as a “null hypothesis” or “no difference” hypothesis. 

There is no difference in the intense rain and crop destruction.

6. Data Record and Analysis

  • During the experiment, data needs to be recorded and collected. Data is a set of values. It should be represented quantitatively (measured in numbers) or qualitatively (an explanation of outcomes).
  • After the data collection, you can interpret the data by drawing a chart or constructing a table or graph to show the result. 
  • After the data representation, you can analyze or interpret the data to understand the meaning of the data. 
  • You can compare the results with other experiments visually or in graphics form. 

7. Draw a Conclusion

  • Your Conclusion always showcases whether the experiments support the prediction and hypothesis or contradict.
  • Scientists will analyze the experiment’s results and develop a new hypothesis based on the data they collect if they discover that their experiment did not support their hypothesis or that their prediction is not supported.
  • While we conclude the experiment, all the collected results will be analyzed, which helps to interpret the hypothesis.
  • Did your experiments support or reject your hypothesis? 
  • Does your hypothesis prove or disprove your study? 
  • Did your results show a strong correlation? 
  • Was there any way to change the thing to make a better experiment?
  • Are there things that need to be studied further? 
  • If your hypothesis is supported, then that is fine. You can carry on. 
  • But If not, do not try to manipulate the result or try to change the result. 
  • Keep the result to its original form, or you can further repeat the experiment to get better results.

Scientific Method Steps

Application of Scientific Method

  • It is essential in many sectors, such as social sciences, empirical sciences, statistics, biology, chemistry, and physics. It can be used in the laboratory.
  • Scientific methods lead to discoveries, innovations, and improvements in various disciplines.
  • The scientific method can be used to solve problems, explain the phenomena of the study, and find and test solutions.
  • Scientific methods guarantee that the findings are based on evidence, making the study reliable and replicable and allowing research to occur objectively and systematically.
  • The Editors of Encyclopaedia Britannica. (2024, March 14). Scientific method | Definition, Steps, & Application. Retrieved from https://www.britannica.com/science/scientific-method
  • Biology Dictionary. (2020, November 6). Scientific method. Retrieved from https://biologydictionary.net/scientific-method/
  • Bailey, R. (2019, August 21). Scientific method. Retrieved from https://www.thoughtco.com/scientific-method-p2-373335
  • Buddies, S., & Buddies, S. (2023, August 17). Writing a Science Fair Project research plan. Retrieved from https://www.sciencebuddies.org/science-fair-projects/science-fair/writing-a-science-fair-project-research-plan
  • Buddies, S., & Buddies, S. (2024, January 25). Steps of the scientific method. Retrieved from https://www.sciencebuddies.org/science-fair-projects/science-fair/steps-of-the-scientific-method
  • Helmenstine, A. (2023, January 1). Steps of the scientific method. Retrieved from https://sciencenotes.org/steps-scientific-method/
  • Cartwright, M., & Greer, R. (2023). Scientific method. World History Encyclopedia . Retrieved from https://www.worldhistory.org/Scientific_Method/
  • https://www.extension.purdue.edu/extmedia/ID/ID-507-w.pdf
  • GeeksforGeeks. (2024, April 18). Applications of scientific methods. Retrieved from https://www.geeksforgeeks.org/applications-of-scientific-methods/

About Author

Photo of author

Prativa Shrestha

1 thought on “Scientific Method: Definition, Steps, Examples, Uses”

Leave a comment cancel reply.

Save my name, email, and website in this browser for the next time I comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

COMMENTS

  1. A Guide to Using the Scientific Method in Everyday Life

    The scientific method—the process used by scientists to understand the natural world—has the merit of investigating natural phenomena in a rigorous manner. Working from hypotheses, scientists draw conclusions based on empirical data.

  2. Using the Scientific Method to Solve Problems - Mind Tools

    The processes of problem-solving and decision-making can be complicated and drawn out. In this article we look at how the scientific method, along with deductive and inductive reasoning can help simplify these processes.

  3. The scientific method (article) | Khan Academy

    At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation.

  4. How to Use the Scientific Method in Everyday Life | Sciencing

    The scientific method begins with the recognition of a problem and a clear elaboration or description of the problem itself. A process of experimentation and data collection then follows. The final steps consist of the formulation and testing of a hypothesis or potential solution and conclusion.

  5. Solving Everyday Problems with the Scientific Method

    Containing real-life examples of how various problems are solved — for instance, how some observant patients cure their own illnesses when medical experts have failed — this book will train readers to observe what others may have missed and conceive what others may not have contemplated.

  6. The 6 Scientific Method Steps and How to Use Them - PrepScholar

    When you’re faced with a scientific problem, solving it can seem like an impossible prospect. There are so many possible explanations for everything we see and experience—how can you possibly make sense of them all? Science has a simple answer: the scientific method.

  7. Scientific Method Examples and the 6 Key Steps | YourDictionary

    The scientific method consists of six steps: Define purpose; Construct hypothesis; Test the hypothesis and collect data; Analyze data; Draw conclusion; Communicate results; Before you can use the scientific method correctly in your own experiments, you must have a good understanding of independent and dependent variables. To better understand ...

  8. 1.1.6: Scientific Problem Solving - Chemistry LibreTexts

    The scientific method, as developed by Bacon and others, involves several steps: Ask a question - identify the problem to be considered. Make observations - gather data that pertains to the question. Propose an explanation (a hypothesis) for the observations. Make new observations to test the hypothesis further.

  9. How the Scientific Method Works | HowStuffWorks

    Sounds difficult, right? Not if we break this long-winded definition into its most important parts. By doing so, we'll achieve two things: First, we'll support the argument that science isn't mysterious or unattainable. Second, we'll demonstrate that the method of science is really no different than science itself. 1 2 … 11. Print | Citation.

  10. Scientific Method: Definition, Steps, Examples, Uses

    Interesting Science Videos. Steps of Scientific Method. There are seven steps of the scientific method such as: Make an observation. Ask a question. Background research/ Research the topic. Formulate a hypothesis. Conduct an experiment to test the hypothesis. Data record and analysis.