10–50 m
MmWave is a very high band spectrum between 30 to 300 GHz. As it is a significantly less used spectrum, it provides very high-speed wireless communication. MmWave offers ultra-wide bandwidth for next-generation mobile networks. MmWave has lots of advantages, but it has some disadvantages, too, such as mmWave signals are very high-frequency signals, so they have more collision with obstacles in the air which cause the signals loses energy quickly. Buildings and trees also block MmWave signals, so these signals cover a shorter distance. To resolve these issues, multiple small cell stations are installed to cover the gap between end-user and base station [ 18 ]. Small cell covers a very shorter range, so the installation of a small cell depends on the population of a particular area. Generally, in a populated place, the distance between each small cell varies from 10 to 90 meters. In the survey [ 20 ], various authors implemented small cells with massive MIMO simultaneously. They also reviewed multiple technologies used in 5G like beamforming, small cell, massive MIMO, NOMA, device to device (D2D) communication. Various problems like interference management, spectral efficiency, resource management, energy efficiency, and backhauling are discussed. The author also gave a detailed presentation of all the issues occurring while implementing small cells with various 5G technologies. As shown in the Figure 7 , mmWave has a higher range, so it can be easily blocked by the obstacles as shown in Figure 7 a. This is one of the key concerns of millimeter-wave signal transmission. To solve this issue, the small cell can be placed at a short distance to transmit the signals easily, as shown in Figure 7 b.
Pictorial representation of communication with and without small cells.
Beamforming is a key technology of wireless networks which transmits the signals in a directional manner. 5G beamforming making a strong wireless connection toward a receiving end. In conventional systems when small cells are not using beamforming, moving signals to particular areas is quite difficult. Beamforming counter this issue using beamforming small cells are able to transmit the signals in particular direction towards a device like mobile phone, laptops, autonomous vehicle and IoT devices. Beamforming is improving the efficiency and saves the energy of the 5G network. Beamforming is broadly divided into three categories: Digital beamforming, analog beamforming and hybrid beamforming. Digital beamforming: multiuser MIMO is equal to digital beamforming which is mainly used in LTE Advanced Pro and in 5G NR. In digital beamforming the same frequency or time resources can be used to transmit the data to multiple users at the same time which improves the cell capacity of wireless networks. Analog Beamforming: In mmWave frequency range 5G NR analog beamforming is a very important approach which improves the coverage. In digital beamforming there are chances of high pathloss in mmWave as only one beam per set of antenna is formed. While the analog beamforming saves high pathloss in mmWave. Hybrid beamforming: hybrid beamforming is a combination of both analog beamforming and digital beamforming. In the implementation of MmWave in 5G network hybrid beamforming will be used [ 84 ].
Wireless signals in the 4G network are spreading in large areas, and nature is not Omnidirectional. Thus, energy depletes rapidly, and users who are accessing these signals also face interference problems. The beamforming technique is used in the 5G network to resolve this issue. In beamforming signals are directional. They move like a laser beam from the base station to the user, so signals seem to be traveling in an invisible cable. Beamforming helps achieve a faster data rate; as the signals are directional, it leads to less energy consumption and less interference. In [ 21 ], investigators evolve some techniques which reduce interference and increase system efficiency of the 5G mobile network. In this survey article, the authors covered various challenges faced while designing an optimized beamforming algorithm. Mainly focused on different design parameters such as performance evaluation and power consumption. In addition, they also described various issues related to beamforming like CSI, computation complexity, and antenna correlation. They also covered various research to cover how beamforming helps implement MIMO in next-generation mobile networks [ 85 ]. Figure 8 shows the pictorial representation of communication with and without using beamforming.
Pictorial Representation of communication with and without using beamforming.
Mobile Edge Computing (MEC) [ 24 ]: MEC is an extended version of cloud computing that brings cloud resources closer to the end-user. When we talk about computing, the very first thing that comes to our mind is cloud computing. Cloud computing is a very famous technology that offers many services to end-user. Still, cloud computing has many drawbacks. The services available in the cloud are too far from end-users that create latency, and cloud user needs to download the complete application before use, which also increases the burden to the device [ 86 ]. MEC creates an edge between the end-user and cloud server, bringing cloud computing closer to the end-user. Now, all the services, namely, video conferencing, virtual software, etc., are offered by this edge that improves cloud computing performance. Another essential feature of MEC is that the application is split into two parts, which, first one is available at cloud server, and the second is at the user’s device. Therefore, the user need not download the complete application on his device that increases the performance of the end user’s device. Furthermore, MEC provides cloud services at very low latency and less bandwidth. In [ 23 , 87 ], the author’s investigation proved that successful deployment of MEC in 5G network increases the overall performance of 5G architecture. Graphical differentiation between cloud computing and mobile edge computing is presented in Figure 9 .
Pictorial representation of cloud computing vs. mobile edge computing.
Security is the key feature in the telecommunication network industry, which is necessary at various layers, to handle 5G network security in applications such as IoT, Digital forensics, IDS and many more [ 88 , 89 ]. The authors [ 90 ], discussed the background of 5G and its security concerns, challenges and future directions. The author also introduced the blockchain technology that can be incorporated with the IoT to overcome the challenges in IoT. The paper aims to create a security framework which can be incorporated with the LTE advanced network, and effective in terms of cost, deployment and QoS. In [ 91 ], author surveyed various form of attacks, the security challenges, security solutions with respect to the affected technology such as SDN, Network function virtualization (NFV), Mobile Clouds and MEC, and security standardizations of 5G, i.e., 3GPP, 5GPPP, Internet Engineering Task Force (IETF), Next Generation Mobile Networks (NGMN), European Telecommunications Standards Institute (ETSI). In [ 92 ], author elaborated various technological aspects, security issues and their existing solutions and also mentioned the new emerging technological paradigms for 5G security such as blockchain, quantum cryptography, AI, SDN, CPS, MEC, D2D. The author aims to create new security frameworks for 5G for further use of this technology in development of smart cities, transportation and healthcare. In [ 93 ], author analyzed the threats and dark threat, security aspects concerned with SDN and NFV, also their Commercial & Industrial Security Corporation (CISCO) 5G vision and new security innovations with respect to the new evolving architectures of 5G [ 94 ].
AuthenticationThe identification of the user in any network is made with the help of authentication. The different mobile network generations from 1G to 5G have used multiple techniques for user authentication. 5G utilizes the 5G Authentication and Key Agreement (AKA) authentication method, which shares a cryptographic key between user equipment (UE) and its home network and establishes a mutual authentication process between the both [ 95 ].
Access Control To restrict the accessibility in the network, 5G supports access control mechanisms to provide a secure and safe environment to the users and is controlled by network providers. 5G uses simple public key infrastructure (PKI) certificates for authenticating access in the 5G network. PKI put forward a secure and dynamic environment for the 5G network. The simple PKI technique provides flexibility to the 5G network; it can scale up and scale down as per the user traffic in the network [ 96 , 97 ].
Communication Security 5G deals to provide high data bandwidth, low latency, and better signal coverage. Therefore secure communication is the key concern in the 5G network. UE, mobile operators, core network, and access networks are the main focal point for the attackers in 5G communication. Some of the common attacks in communication at various segments are Botnet, message insertion, micro-cell, distributed denial of service (DDoS), and transport layer security (TLS)/secure sockets layer (SSL) attacks [ 98 , 99 ].
Encryption The confidentiality of the user and the network is done using encryption techniques. As 5G offers multiple services, end-to-end (E2E) encryption is the most suitable technique applied over various segments in the 5G network. Encryption forbids unauthorized access to the network and maintains the data privacy of the user. To encrypt the radio traffic at Packet Data Convergence Protocol (PDCP) layer, three 128-bits keys are applied at the user plane, nonaccess stratum (NAS), and access stratum (AS) [ 100 ].
In this section, various issues addressed by investigators in 5G technologies are presented in Table 13 . In addition, different parameters are considered, such as throughput, latency, energy efficiency, data rate, spectral efficiency, fairness & computing capacity, transmission rate, coverage, cost, security requirement, performance, QoS, power optimization, etc., indexed from R1 to R14.
Summary of 5G Technology above stated challenges (R1:Throughput, R2:Latency, R3:Energy Efficiency, R4:Data Rate, R5:Spectral efficiency, R6:Fairness & Computing Capacity, R7:Transmission Rate, R8:Coverage, R9:Cost, R10:Security requirement, R11:Performance, R12:Quality of Services (QoS), R13:Power Optimization).
Approach | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | R12 | R13 | R14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Panzner et al. [ ] | Good | Low | Good | - | Avg | - | - | - | - | - | - | - | - | - |
Qiao et al. [ ] | - | - | - | - | - | - | - | Avg | Good | Avg | - | - | - | - |
He et al. [ ] | Avg | Low | Avg | - | - | - | - | - | - | - | - | - | - | - |
Abrol and jha [ ] | - | - | Good | - | - | - | - | - | - | - | - | - | - | Good |
Al-Imari et al. [ ] | - | - | - | - | Good | Good | Avg | - | - | - | - | - | - | - |
Papadopoulos et al. [ ] | Good | Low | Avg | - | Avg | - | - | - | - | - | - | - | - | - |
Kiani and Nsari [ ] | - | - | - | - | Avg | Good | Good | - | - | - | - | - | - | - |
Beck [ ] | - | Low | - | - | - | - | - | Avg | - | - | - | Good | - | Avg |
Ni et al. [ ] | - | - | - | Good | - | - | - | - | - | - | Avg | Avg | - | - |
Elijah [ ] | Avg | Low | Avg | - | - | - | - | - | - | - | - | - | - | - |
Alawe et al. [ ] | - | Low | Good | - | - | - | - | - | - | - | - | - | Avg | - |
Zhou et al. [ ] | Avg | - | Good | - | Avg | - | - | - | - | - | - | - | - | - |
Islam et al. [ ] | - | - | - | - | Good | Avg | Avg | - | - | - | - | - | - | - |
Bega et al. [ ] | - | Avg | - | - | - | - | - | - | - | - | - | - | Good | - |
Akpakwu et al. [ ] | - | - | - | Good | - | - | - | - | - | - | Avg | Good | - | - |
Wei et al. [ ] | - | - | - | - | - | - | - | Good | Avg | Low | - | - | - | - |
Khurpade et al. [ ] | - | - | - | Avg | - | - | - | - | - | - | - | Avg | - | - |
Timotheou and Krikidis [ ] | - | - | - | - | Good | Good | Avg | - | - | - | - | - | - | - |
Wang [ ] | Avg | Low | Avg | Avg | - | - | - | - | - | - | - | - | - | - |
Akhil Gupta & R. K. Jha [ ] | - | - | Good | Avg | Good | - | - | - | - | - | - | Good | Good | - |
Pérez-Romero et al. [ ] | - | - | Avg | - | - | - | - | - | - | - | - | - | - | Avg |
Pi [ ] | - | - | - | - | - | - | - | Good | Good | Avg | - | - | - | - |
Zi et al. [ ] | - | Avg | Good | - | - | - | - | - | - | - | - | - | - | - |
Chin [ ] | - | - | Good | Avg | - | - | - | - | - | Avg | - | Good | - | - |
Mamta Agiwal [ ] | - | Avg | - | Good | - | - | - | - | - | - | Good | Avg | - | - |
Ramesh et al. [ ] | Good | Avg | Good | - | Good | - | - | - | - | - | - | - | - | - |
Niu [ ] | - | - | - | - | - | - | - | Good | Avg | Avg | - | - | - | |
Fang et al. [ ] | - | Avg | Good | - | - | - | - | - | - | - | - | - | Good | - |
Hoydis [ ] | - | - | Good | - | Good | - | - | - | - | Avg | - | Good | - | - |
Wei et al. [ ] | - | - | - | - | Good | Avg | Good | - | - | - | - | - | - | - |
Hong et al. [ ] | - | - | - | - | - | - | - | - | Avg | Avg | Low | - | - | - |
Rashid [ ] | - | - | - | Good | - | - | - | Good | - | - | - | Avg | - | Good |
Prasad et al. [ ] | Good | - | Good | - | Avg | - | - | - | - | - | - | - | - | - |
Lähetkangas et al. [ ] | - | Low | Av | - | - | - | - | - | - | - | - | - | - | - |
This survey article illustrates the emergence of 5G, its evolution from 1G to 5G mobile network, applications, different research groups, their work, and the key features of 5G. It is not just a mobile broadband network, different from all the previous mobile network generations; it offers services like IoT, V2X, and Industry 4.0. This paper covers a detailed survey from multiple authors on different technologies in 5G, such as massive MIMO, Non-Orthogonal Multiple Access (NOMA), millimeter wave, small cell, MEC (Mobile Edge Computing), beamforming, optimization, and machine learning in 5G. After each section, a tabular comparison covers all the state-of-the-research held in these technologies. This survey also shows the importance of these newly added technologies and building a flexible, scalable, and reliable 5G network.
This article covers a detailed survey on the 5G mobile network and its features. These features make 5G more reliable, scalable, efficient at affordable rates. As discussed in the above sections, numerous technical challenges originate while implementing those features or providing services over a 5G mobile network. So, for future research directions, the research community can overcome these challenges while implementing these technologies (MIMO, NOMA, small cell, mmWave, beam-forming, MEC) over a 5G network. 5G communication will bring new improvements over the existing systems. Still, the current solutions cannot fulfill the autonomous system and future intelligence engineering requirements after a decade. There is no matter of discussion that 5G will provide better QoS and new features than 4G. But there is always room for improvement as the considerable growth of centralized data and autonomous industry 5G wireless networks will not be capable of fulfilling their demands in the future. So, we need to move on new wireless network technology that is named 6G. 6G wireless network will bring new heights in mobile generations, as it includes (i) massive human-to-machine communication, (ii) ubiquitous connectivity between the local device and cloud server, (iii) creation of data fusion technology for various mixed reality experiences and multiverps maps. (iv) Focus on sensing and actuation to control the network of the entire world. The 6G mobile network will offer new services with some other technologies; these services are 3D mapping, reality devices, smart homes, smart wearable, autonomous vehicles, artificial intelligence, and sense. It is expected that 6G will provide ultra-long-range communication with a very low latency of 1 ms. The per-user bit rate in a 6G wireless network will be approximately 1 Tbps, and it will also provide wireless communication, which is 1000 times faster than 5G networks.
Author contributions.
Conceptualization: R.D., I.Y., G.C., P.L. data gathering: R.D., G.C., P.L, I.Y. funding acquisition: I.Y. investigation: I.Y., G.C., G.P. methodology: R.D., I.Y., G.C., P.L., G.P., survey: I.Y., G.C., P.L, G.P., R.D. supervision: G.C., I.Y., G.P. validation: I.Y., G.P. visualization: R.D., I.Y., G.C., P.L. writing, original draft: R.D., I.Y., G.C., P.L., G.P. writing, review, and editing: I.Y., G.C., G.P. All authors have read and agreed to the published version of the manuscript.
This paper was supported by Soonchunhyang University.
Informed consent statement, data availability statement, conflicts of interest.
The authors declare no conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
IMAGES
VIDEO
COMMENTS
Digital Twin technology is an emerging concept that has become the centre of attention for industry and, in more recent years, academia. The advancements in industry 4.0 concepts have facilitated its growth, particularly in the manufacturing industry. The Digital Twin is defined extensively but is best described as the effortless integration of data between a physical and virtual machine in ...
As the fifth generation of mobile networks climbs above the horizon, this technology's transformational impact and is set to have on the world is commendable. The 5G network is a promising technology that revolutionizes and connects the global world through seamless connectivity. This paper presents a survey on 5G networks on how, in particular, it to address the drawbacks of foregoing ...
The Internet of Things (IoT)-centric concepts like augmented reality, high-resolution video streaming, self-driven cars, smart environment, e-health care, etc. have a ubiquitous presence now. These applications require higher data-rates, large bandwidth, increased capacity, low latency and high throughput. In light of these emerging concepts, IoT has revolutionized the world by providing ...
IEEE publishes the leading journals, transactions, letters, and magazines in electrical engineering, computing, biotechnology, telecommunications, power and energy, and dozens of other technologies. In addition, IEEE publishes more than 1,800 leading-edge conference proceedings every year, which are recognized by academia and industry worldwide ...
The advent of 5G technology promises a paradigm shift in wireless communication networks, catering to the exponentially growing demand for high data rates, low latency, and massive connectivity. In this context, Support Vector Machine (SVM) emerges as a potent tool for enhancing the performance and efficiency of 5G cellular systems. This abstract explores the integration of SVM techniques into ...
Published in: 2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI) Article #: Date of Conference: 23-25 November 2023. Date Added to IEEE Xplore: 16 February 2024. ISBN Information: Electronic ISBN: 979-8-3503-6996-. Print on Demand (PoD) ISBN: 979-8-3503-6997-7.
Profile Information. Communications Preferences. Profession and Education. Technical interests. Need Help? US & Canada: +1 800 678 4333. Worldwide: +1 732 981 0060. Contact & Support.
Quantum computing (QC) has the potential to be the next abstruse technology, with a wide range of possible applications and ramifications for organizations and markets. QC provides an exponential speedup by employing quantum mechanics principles, including superposition and entanglement. The potential advantages offered by the revolutionary paradigm have propelled scientific productions ...
The Proceedings of the IEEE Best Paper Award Congratulations to Our 2023 Award Winner! LEARN MORE . ... Physical Layer Covert Communication in B5G Wireless Networks—Its Research, Applications, and Challenges. ... IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. ...
Technology Prospects for Data-Intensive Computing. By K. Akarvardar and H.-S. P. Wong. This article advances the idea that data-intensive computing will further cement semiconductor technology as a foundational technology with multidimensional pathways for growth.
January 2024 - Proceedings of the IEEE. 2024 Journal Issues March 5, 2024. Regular Papers. Volume 112, Issue 1. January 2024. Access the Full Issue.
The fifth-generation cellular network (5G) represents a major step forward for technology. In particular, it offers benefits for the network of interrelated devices reliant on wireless technology for communication and data transfer, otherwise known as the Internet of Things (IoT). The 5G wireless network uses Internet Protocol (IP) for all ...
Internet-Based Social Engineering Psychology, Attacks, and Defenses: A Survey. By T. T. Longtchi, R. Montañez Rodriguez, L. Al-Shawaf, A. Atyabi, and S. Xu. This article systemizes Internet-based social engineering attacks through a psychological lens and investigates why current defenses have limited success. It also provides a roadmap for ...
Proceedings of the IEEE at a Glance. Leading journal since 1913. Covers all topics in electrical engineering and computer science. Surveys, reviews, and tutorials of broad significance. Applications-oriented focus. Special issues and sections led by distinguished guest editors. Impact Factor. 14.91. Article Influence Score.
These journals are significant additions to IEEE's well-known and respected portfolio of fully open access journals. In addition, many of the journals featured here target an accelerated publication time frame of 10 weeks for most accepted papers to help get your research exposed faster. Visit the publication home page of each title for details.
In this paper we have described the applications of LiFi in different domains which will help us to magnify the new research area in this technology. Published in: 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE) Date of Conference: 01-03 December 2020. Date Added to IEEE Xplore: 26 February 2021.
IEEE membership offers access to technical innovation, cutting-edge information, networking opportunities, and exclusive member benefits. Members support IEEE's mission to advance technology for humanity and the profession, while memberships build a platform to introduce careers in technology to students around the world.
The IEEE Technology Roadmaps Committee (IRC) works to provide guidance and infrastructure to support technology roadmap activities across IEEE. IRC, as supported by IEEE Future Directions, is a valued resource to any society or community as it develops and promotes its technology roadmap as a critical resource between research and industry.
The IEEE Member Digital Library, brought to you via the IEEE Xplore digital library, gives you instant access to all IEEE journal articles, magazines, and conference papers—the most essential information in technology today. With two great options designed to meet the needs—and budget—of every IEEE member, simply choose the subscription that's right for you:
The aim of this paper is to follow the technology over the years and to provide a comprehensive and integrated evidence-driven account of its build-up. ... but also with digital, sensors and computer engineering. Among the top venues for 5G-related research, IEEE journals are dominant. 9 The earliest two publications on 5G in our database came ...
The latest engineering and computer science advances in context from IEEE Spectrum and the Xplore Digital Library. 05 Oct 2024. 01 Oct 2024. 18 Sep 2024. 07 Sep 2024. 23 Jul 2024. 06 Jul 2024 ...
By Nir Kshetri and Jeffrey Voas. Published in the July/August 2018 issue of IEEE Software; recognized among the top eight winners of the 2018 Most Influential Blockchain Research Papers by the Third Blockchain Connect Conference Awards. "E-Voting is among the key public sectors that can be disrupted by blockchain technology.
The Nobel Prize Committee for Physics awarded the 2024 Nobel Prize to John J. Hopfield and Geoffrey E. Hinton for their pioneering work in neural networks. Their 1980s papers, grounded in physics ...
Read all the papers in 2023 IEEE MIT Undergraduate Research Technology Conference (URTC) | IEEE Conference | IEEE Xplore IEEE Account. Change Username/Password; Update Address ... IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.
1. Introduction. Most recently, in three decades, rapid growth was marked in the field of wireless communication concerning the transition of 1G to 4G [1,2].The main motto behind this research was the requirements of high bandwidth and very low latency. 5G provides a high data rate, improved quality of service (QoS), low-latency, high coverage, high reliability, and economically affordable ...