loading

How it works

For Business

Join Mind Tools

Article • 7 min read

Cause and Effect Analysis

Identifying the likely causes of problems.

By the Mind Tools Content Team

(Also known as Cause and Effect Diagrams, Fishbone Diagrams, Ishikawa Diagrams, Herringbone Diagrams, and Fishikawa Diagrams.)

When you have a serious problem, it's important to explore all of the things that could cause it, before you start to think about a solution.

That way you can solve the problem completely, first time round, rather than just addressing part of it and having the problem run on and on.

Cause and Effect Analysis gives you a useful way of doing this. This diagram-based technique, which combines Brainstorming with a type of Mind Map , pushes you to consider all possible causes of a problem, rather than just the ones that are most obvious.

Click here to view a transcript of this video.

About the Tool

Cause and Effect Analysis was devised by professor Kaoru Ishikawa, a pioneer of quality management, in the 1960s. The technique was then published in his 1990 book, " Introduction to Quality Control ." [1]

The diagrams that you create with are known as Ishikawa Diagrams or Fishbone Diagrams (because a completed diagram can look like the skeleton of a fish).

Although it was originally developed as a quality control tool, you can use the technique just as well in other ways. For instance, you can use it to:

  • Discover the root cause of a problem.
  • Uncover bottlenecks in your processes.
  • Identify where and why a process isn't working.

How to Use the Tool

Follow these steps to solve a problem with Cause and Effect Analysis:

Step 1: Identify the Problem

First, write down the exact problem you face. Where appropriate, identify who is involved, what the problem is, and when and where it occurs.

Then, write the problem in a box on the left-hand side of a large sheet of paper, and draw a line across the paper horizontally from the box. This arrangement, looking like the head and spine of a fish, gives you space to develop ideas.

In this simple example, a manager is having problems with an uncooperative branch office.

Figure 1 – Cause and Effect Analysis Example Step 1

the herring problem solving method

(Click image to view full size.)

Some people prefer to write the problem on the right-hand side of the piece of paper, and develop ideas in the space to the left. Use whichever approach you feel most comfortable with.

It's important to define your problem correctly. CATWOE can help you do this – this asks you to look at the problem from the perspective of Customers, Actors in the process, the Transformation process, the overall World view, the process Owner, and Environmental constraints.

By considering all of these, you can develop a comprehensive understanding of the problem.

Step 2: Work Out the Major Factors Involved

Next, identify the factors that may be part of the problem. These may be systems, equipment, materials, external forces, people involved with the problem, and so on.

Try to draw out as many of these as possible. As a starting point, you can use models such as the McKinsey 7S Framework (which offers you Strategy, Structure, Systems, Shared values, Skills, Style and Staff as factors that you can consider) or the 4Ps of Marketing (which offers Product, Place, Price, and Promotion as possible factors).

Brainstorm any other factors that may affect the situation.

Then draw a line off the "spine" of the diagram for each factor, and label each line.

The manager identifies the following factors, and adds these to his diagram:

Figure 2 – Cause and Effect Analysis Example Step 2

the herring problem solving method

Step 3: Identify Possible Causes

Now, for each of the factors you considered in step 2, brainstorm possible causes of the problem that may be related to the factor.

Show these possible causes as shorter lines coming off the "bones" of the diagram. Where a cause is large or complex, then it may be best to break it down into sub-causes. Show these as lines coming off each cause line.

For each of the factors he identified in step 2, the manager brainstorms possible causes of the problem, and adds these to his diagram, as shown in figure 3.

Figure 3 – Cause and Effect Analysis Example Step 3

the herring problem solving method

Step 4: Analyze Your Diagram

By this stage you should have a diagram showing all of the possible causes of the problem that you can think of.

Depending on the complexity and importance of the problem, you can now investigate the most likely causes further. This may involve setting up investigations, carrying out surveys, and so on. These will be designed to test which of these possible causes is actually contributing to the problem.

The manager has now finished his analysis. If he hadn't looked at the problem this way, he might have dealt with it by assuming that people in the branch office were "being difficult."

Instead he thinks that the best approach is to arrange a meeting with the Branch Manager. This would allow him to brief the manager fully on the new strategy, and talk through any problems that she may be experiencing.

A useful way to use this technique with a team is to write all of the possible causes of the problem down on sticky notes. You can then group similar ones together on the diagram.

This approach is sometimes called CEDAC (Cause and Effect Diagram with Additional Cards) and was developed by Dr. Ryuji Fukuda, a Japanese expert on continuous improvement.

Professor Kaoru Ishikawa created Cause and Effect Analysis in the 1960s. The technique uses a diagram-based approach for thinking through all of the possible causes of a problem. This helps you to carry out a thorough analysis of the situation.

There are four steps to using the tool.

  • Identify the problem.
  • Work out the major factors involved.
  • Identify possible causes.
  • Analyze your diagram.

You'll find this method is particularly useful when you're trying to solve complicated problems.

[1] Ishikawa, K (1990).  'Introduction to Quality Control ,' Tokyo: 3A Corporation.

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Solving problems with cause and effect analysis.

How to Use Cause and Effect Diagrams

Problem Solving

Add comment

Comments (0)

Be the first to comment!

the herring problem solving method

Get 30% off your first year of Mind Tools

Great teams begin with empowered leaders. Our tools and resources offer the support to let you flourish into leadership. Join today!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article a3w9aym

The Futures Wheel

Article a27imvh

Mind Tools Store

About Mind Tools Content

Discover something new today

Talent Management

Discover how to develop and retain talented people in your organization

The Knowledge-Creation Model

Nonaka and Takeuchi’s Model Comparing Knowledge Management Between the East and West

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Opening closed minds.

Getting Past an Initial "No"

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Decision Making

Member Podcast

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

the herring problem solving method

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

the herring problem solving method

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

the herring problem solving method

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

the herring problem solving method

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Greek and Roman Papyrology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Emotions
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Variation
  • Language Families
  • Language Evolution
  • Language Reference
  • Lexicography
  • Linguistic Theories
  • Linguistic Typology
  • Linguistic Anthropology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Culture
  • Music and Media
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Oncology
  • Medical Toxicology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Neuroscience
  • Cognitive Psychology
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business History
  • Business Ethics
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic Methodology
  • Economic History
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Politics and Law
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Cognitive Psychology

  • < Previous chapter
  • Next chapter >

48 Problem Solving

Department of Psychological and Brain Sciences, University of California, Santa Barbara

  • Published: 03 June 2013
  • Cite Icon Cite
  • Permissions Icon Permissions

Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. Problems can be classified as routine or nonroutine, and as well defined or ill defined. The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing. Current issues and suggested future issues include decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific thinking, everyday thinking, and the cognitive neuroscience of problem solving. Common themes concern the domain specificity of problem solving and a focus on problem solving in authentic contexts.

The study of problem solving begins with defining problem solving, problem, and problem types. This introduction to problem solving is rounded out with an examination of cognitive processes in problem solving, the role of knowledge in problem solving, and historical approaches to the study of problem solving.

Definition of Problem Solving

Problem solving refers to cognitive processing directed at achieving a goal for which the problem solver does not initially know a solution method. This definition consists of four major elements (Mayer, 1992 ; Mayer & Wittrock, 2006 ):

Cognitive —Problem solving occurs within the problem solver’s cognitive system and can only be inferred indirectly from the problem solver’s behavior (including biological changes, introspections, and actions during problem solving). Process —Problem solving involves mental computations in which some operation is applied to a mental representation, sometimes resulting in the creation of a new mental representation. Directed —Problem solving is aimed at achieving a goal. Personal —Problem solving depends on the existing knowledge of the problem solver so that what is a problem for one problem solver may not be a problem for someone who already knows a solution method.

The definition is broad enough to include a wide array of cognitive activities such as deciding which apartment to rent, figuring out how to use a cell phone interface, playing a game of chess, making a medical diagnosis, finding the answer to an arithmetic word problem, or writing a chapter for a handbook. Problem solving is pervasive in human life and is crucial for human survival. Although this chapter focuses on problem solving in humans, problem solving also occurs in nonhuman animals and in intelligent machines.

How is problem solving related to other forms of high-level cognition processing, such as thinking and reasoning? Thinking refers to cognitive processing in individuals but includes both directed thinking (which corresponds to the definition of problem solving) and undirected thinking such as daydreaming (which does not correspond to the definition of problem solving). Thus, problem solving is a type of thinking (i.e., directed thinking).

Reasoning refers to problem solving within specific classes of problems, such as deductive reasoning or inductive reasoning. In deductive reasoning, the reasoner is given premises and must derive a conclusion by applying the rules of logic. For example, given that “A is greater than B” and “B is greater than C,” a reasoner can conclude that “A is greater than C.” In inductive reasoning, the reasoner is given (or has experienced) a collection of examples or instances and must infer a rule. For example, given that X, C, and V are in the “yes” group and x, c, and v are in the “no” group, the reasoning may conclude that B is in “yes” group because it is in uppercase format. Thus, reasoning is a type of problem solving.

Definition of Problem

A problem occurs when someone has a goal but does not know to achieve it. This definition is consistent with how the Gestalt psychologist Karl Duncker ( 1945 , p. 1) defined a problem in his classic monograph, On Problem Solving : “A problem arises when a living creature has a goal but does not know how this goal is to be reached.” However, today researchers recognize that the definition should be extended to include problem solving by intelligent machines. This definition can be clarified using an information processing approach by noting that a problem occurs when a situation is in the given state, the problem solver wants the situation to be in the goal state, and there is no obvious way to move from the given state to the goal state (Newell & Simon, 1972 ). Accordingly, the three main elements in describing a problem are the given state (i.e., the current state of the situation), the goal state (i.e., the desired state of the situation), and the set of allowable operators (i.e., the actions the problem solver is allowed to take). The definition of “problem” is broad enough to include the situation confronting a physician who wishes to make a diagnosis on the basis of preliminary tests and a patient examination, as well as a beginning physics student trying to solve a complex physics problem.

Types of Problems

It is customary in the problem-solving literature to make a distinction between routine and nonroutine problems. Routine problems are problems that are so familiar to the problem solver that the problem solver knows a solution method. For example, for most adults, “What is 365 divided by 12?” is a routine problem because they already know the procedure for long division. Nonroutine problems are so unfamiliar to the problem solver that the problem solver does not know a solution method. For example, figuring out the best way to set up a funding campaign for a nonprofit charity is a nonroutine problem for most volunteers. Technically, routine problems do not meet the definition of problem because the problem solver has a goal but knows how to achieve it. Much research on problem solving has focused on routine problems, although most interesting problems in life are nonroutine.

Another customary distinction is between well-defined and ill-defined problems. Well-defined problems have a clearly specified given state, goal state, and legal operators. Examples include arithmetic computation problems or games such as checkers or tic-tac-toe. Ill-defined problems have a poorly specified given state, goal state, or legal operators, or a combination of poorly defined features. Examples include solving the problem of global warming or finding a life partner. Although, ill-defined problems are more challenging, much research in problem solving has focused on well-defined problems.

Cognitive Processes in Problem Solving

The process of problem solving can be broken down into two main phases: problem representation , in which the problem solver builds a mental representation of the problem situation, and problem solution , in which the problem solver works to produce a solution. The major subprocess in problem representation is representing , which involves building a situation model —that is, a mental representation of the situation described in the problem. The major subprocesses in problem solution are planning , which involves devising a plan for how to solve the problem; executing , which involves carrying out the plan; and monitoring , which involves evaluating and adjusting one’s problem solving.

For example, given an arithmetic word problem such as “Alice has three marbles. Sarah has two more marbles than Alice. How many marbles does Sarah have?” the process of representing involves building a situation model in which Alice has a set of marbles, there is set of marbles for the difference between the two girls, and Sarah has a set of marbles that consists of Alice’s marbles and the difference set. In the planning process, the problem solver sets a goal of adding 3 and 2. In the executing process, the problem solver carries out the computation, yielding an answer of 5. In the monitoring process, the problem solver looks over what was done and concludes that 5 is a reasonable answer. In most complex problem-solving episodes, the four cognitive processes may not occur in linear order, but rather may interact with one another. Although some research focuses mainly on the execution process, problem solvers may tend to have more difficulty with the processes of representing, planning, and monitoring.

Knowledge for Problem Solving

An important theme in problem-solving research is that problem-solving proficiency on any task depends on the learner’s knowledge (Anderson et al., 2001 ; Mayer, 1992 ). Five kinds of knowledge are as follows:

Facts —factual knowledge about the characteristics of elements in the world, such as “Sacramento is the capital of California” Concepts —conceptual knowledge, including categories, schemas, or models, such as knowing the difference between plants and animals or knowing how a battery works Procedures —procedural knowledge of step-by-step processes, such as how to carry out long-division computations Strategies —strategic knowledge of general methods such as breaking a problem into parts or thinking of a related problem Beliefs —attitudinal knowledge about how one’s cognitive processing works such as thinking, “I’m good at this”

Although some research focuses mainly on the role of facts and procedures in problem solving, complex problem solving also depends on the problem solver’s concepts, strategies, and beliefs (Mayer, 1992 ).

Historical Approaches to Problem Solving

Psychological research on problem solving began in the early 1900s, as an outgrowth of mental philosophy (Humphrey, 1963 ; Mandler & Mandler, 1964 ). Throughout the 20th century four theoretical approaches developed: early conceptions, associationism, Gestalt psychology, and information processing.

Early Conceptions

The start of psychology as a science can be set at 1879—the year Wilhelm Wundt opened the first world’s psychology laboratory in Leipzig, Germany, and sought to train the world’s first cohort of experimental psychologists. Instead of relying solely on philosophical speculations about how the human mind works, Wundt sought to apply the methods of experimental science to issues addressed in mental philosophy. His theoretical approach became structuralism —the analysis of consciousness into its basic elements.

Wundt’s main contribution to the study of problem solving, however, was to call for its banishment. According to Wundt, complex cognitive processing was too complicated to be studied by experimental methods, so “nothing can be discovered in such experiments” (Wundt, 1911/1973 ). Despite his admonishments, however, a group of his former students began studying thinking mainly in Wurzburg, Germany. Using the method of introspection, subjects were asked to describe their thought process as they solved word association problems, such as finding the superordinate of “newspaper” (e.g., an answer is “publication”). Although the Wurzburg group—as they came to be called—did not produce a new theoretical approach, they found empirical evidence that challenged some of the key assumptions of mental philosophy. For example, Aristotle had proclaimed that all thinking involves mental imagery, but the Wurzburg group was able to find empirical evidence for imageless thought .

Associationism

The first major theoretical approach to take hold in the scientific study of problem solving was associationism —the idea that the cognitive representations in the mind consist of ideas and links between them and that cognitive processing in the mind involves following a chain of associations from one idea to the next (Mandler & Mandler, 1964 ; Mayer, 1992 ). For example, in a classic study, E. L. Thorndike ( 1911 ) placed a hungry cat in what he called a puzzle box—a wooden crate in which pulling a loop of string that hung from overhead would open a trap door to allow the cat to escape to a bowl of food outside the crate. Thorndike placed the cat in the puzzle box once a day for several weeks. On the first day, the cat engaged in many extraneous behaviors such as pouncing against the wall, pushing its paws through the slats, and meowing, but on successive days the number of extraneous behaviors tended to decrease. Overall, the time required to get out of the puzzle box decreased over the course of the experiment, indicating the cat was learning how to escape.

Thorndike’s explanation for how the cat learned to solve the puzzle box problem is based on an associationist view: The cat begins with a habit family hierarchy —a set of potential responses (e.g., pouncing, thrusting, meowing, etc.) all associated with the same stimulus (i.e., being hungry and confined) and ordered in terms of strength of association. When placed in the puzzle box, the cat executes its strongest response (e.g., perhaps pouncing against the wall), but when it fails, the strength of the association is weakened, and so on for each unsuccessful action. Eventually, the cat gets down to what was initially a weak response—waving its paw in the air—but when that response leads to accidentally pulling the string and getting out, it is strengthened. Over the course of many trials, the ineffective responses become weak and the successful response becomes strong. Thorndike refers to this process as the law of effect : Responses that lead to dissatisfaction become less associated with the situation and responses that lead to satisfaction become more associated with the situation. According to Thorndike’s associationist view, solving a problem is simply a matter of trial and error and accidental success. A major challenge to assocationist theory concerns the nature of transfer—that is, where does a problem solver find a creative solution that has never been performed before? Associationist conceptions of cognition can be seen in current research, including neural networks, connectionist models, and parallel distributed processing models (Rogers & McClelland, 2004 ).

Gestalt Psychology

The Gestalt approach to problem solving developed in the 1930s and 1940s as a counterbalance to the associationist approach. According to the Gestalt approach, cognitive representations consist of coherent structures (rather than individual associations) and the cognitive process of problem solving involves building a coherent structure (rather than strengthening and weakening of associations). For example, in a classic study, Kohler ( 1925 ) placed a hungry ape in a play yard that contained several empty shipping crates and a banana attached overhead but out of reach. Based on observing the ape in this situation, Kohler noted that the ape did not randomly try responses until one worked—as suggested by Thorndike’s associationist view. Instead, the ape stood under the banana, looked up at it, looked at the crates, and then in a flash of insight stacked the crates under the bananas as a ladder, and walked up the steps in order to reach the banana.

According to Kohler, the ape experienced a sudden visual reorganization in which the elements in the situation fit together in a way to solve the problem; that is, the crates could become a ladder that reduces the distance to the banana. Kohler referred to the underlying mechanism as insight —literally seeing into the structure of the situation. A major challenge of Gestalt theory is its lack of precision; for example, naming a process (i.e., insight) is not the same as explaining how it works. Gestalt conceptions can be seen in modern research on mental models and schemas (Gentner & Stevens, 1983 ).

Information Processing

The information processing approach to problem solving developed in the 1960s and 1970s and was based on the influence of the computer metaphor—the idea that humans are processors of information (Mayer, 2009 ). According to the information processing approach, problem solving involves a series of mental computations—each of which consists of applying a process to a mental representation (such as comparing two elements to determine whether they differ).

In their classic book, Human Problem Solving , Newell and Simon ( 1972 ) proposed that problem solving involved a problem space and search heuristics . A problem space is a mental representation of the initial state of the problem, the goal state of the problem, and all possible intervening states (based on applying allowable operators). Search heuristics are strategies for moving through the problem space from the given to the goal state. Newell and Simon focused on means-ends analysis , in which the problem solver continually sets goals and finds moves to accomplish goals.

Newell and Simon used computer simulation as a research method to test their conception of human problem solving. First, they asked human problem solvers to think aloud as they solved various problems such as logic problems, chess, and cryptarithmetic problems. Then, based on an information processing analysis, Newell and Simon created computer programs that solved these problems. In comparing the solution behavior of humans and computers, they found high similarity, suggesting that the computer programs were solving problems using the same thought processes as humans.

An important advantage of the information processing approach is that problem solving can be described with great clarity—as a computer program. An important limitation of the information processing approach is that it is most useful for describing problem solving for well-defined problems rather than ill-defined problems. The information processing conception of cognition lives on as a keystone of today’s cognitive science (Mayer, 2009 ).

Classic Issues in Problem Solving

Three classic issues in research on problem solving concern the nature of transfer (suggested by the associationist approach), the nature of insight (suggested by the Gestalt approach), and the role of problem-solving heuristics (suggested by the information processing approach).

Transfer refers to the effects of prior learning on new learning (or new problem solving). Positive transfer occurs when learning A helps someone learn B. Negative transfer occurs when learning A hinders someone from learning B. Neutral transfer occurs when learning A has no effect on learning B. Positive transfer is a central goal of education, but research shows that people often do not transfer what they learned to solving problems in new contexts (Mayer, 1992 ; Singley & Anderson, 1989 ).

Three conceptions of the mechanisms underlying transfer are specific transfer , general transfer , and specific transfer of general principles . Specific transfer refers to the idea that learning A will help someone learn B only if A and B have specific elements in common. For example, learning Spanish may help someone learn Latin because some of the vocabulary words are similar and the verb conjugation rules are similar. General transfer refers to the idea that learning A can help someone learn B even they have nothing specifically in common but A helps improve the learner’s mind in general. For example, learning Latin may help people learn “proper habits of mind” so they are better able to learn completely unrelated subjects as well. Specific transfer of general principles is the idea that learning A will help someone learn B if the same general principle or solution method is required for both even if the specific elements are different.

In a classic study, Thorndike and Woodworth ( 1901 ) found that students who learned Latin did not subsequently learn bookkeeping any better than students who had not learned Latin. They interpreted this finding as evidence for specific transfer—learning A did not transfer to learning B because A and B did not have specific elements in common. Modern research on problem-solving transfer continues to show that people often do not demonstrate general transfer (Mayer, 1992 ). However, it is possible to teach people a general strategy for solving a problem, so that when they see a new problem in a different context they are able to apply the strategy to the new problem (Judd, 1908 ; Mayer, 2008 )—so there is also research support for the idea of specific transfer of general principles.

Insight refers to a change in a problem solver’s mind from not knowing how to solve a problem to knowing how to solve it (Mayer, 1995 ; Metcalfe & Wiebe, 1987 ). In short, where does the idea for a creative solution come from? A central goal of problem-solving research is to determine the mechanisms underlying insight.

The search for insight has led to five major (but not mutually exclusive) explanatory mechanisms—insight as completing a schema, insight as suddenly reorganizing visual information, insight as reformulation of a problem, insight as removing mental blocks, and insight as finding a problem analog (Mayer, 1995 ). Completing a schema is exemplified in a study by Selz (Fridja & de Groot, 1982 ), in which people were asked to think aloud as they solved word association problems such as “What is the superordinate for newspaper?” To solve the problem, people sometimes thought of a coordinate, such as “magazine,” and then searched for a superordinate category that subsumed both terms, such as “publication.” According to Selz, finding a solution involved building a schema that consisted of a superordinate and two subordinate categories.

Reorganizing visual information is reflected in Kohler’s ( 1925 ) study described in a previous section in which a hungry ape figured out how to stack boxes as a ladder to reach a banana hanging above. According to Kohler, the ape looked around the yard and found the solution in a flash of insight by mentally seeing how the parts could be rearranged to accomplish the goal.

Reformulating a problem is reflected in a classic study by Duncker ( 1945 ) in which people are asked to think aloud as they solve the tumor problem—how can you destroy a tumor in a patient without destroying surrounding healthy tissue by using rays that at sufficient intensity will destroy any tissue in their path? In analyzing the thinking-aloud protocols—that is, transcripts of what the problem solvers said—Duncker concluded that people reformulated the goal in various ways (e.g., avoid contact with healthy tissue, immunize healthy tissue, have ray be weak in healthy tissue) until they hit upon a productive formulation that led to the solution (i.e., concentrating many weak rays on the tumor).

Removing mental blocks is reflected in classic studies by Duncker ( 1945 ) in which solving a problem involved thinking of a novel use for an object, and by Luchins ( 1942 ) in which solving a problem involved not using a procedure that had worked well on previous problems. Finding a problem analog is reflected in classic research by Wertheimer ( 1959 ) in which learning to find the area of a parallelogram is supported by the insight that one could cut off the triangle on one side and place it on the other side to form a rectangle—so a parallelogram is really a rectangle in disguise. The search for insight along each of these five lines continues in current problem-solving research.

Heuristics are problem-solving strategies, that is, general approaches to how to solve problems. Newell and Simon ( 1972 ) suggested three general problem-solving heuristics for moving from a given state to a goal state: random trial and error , hill climbing , and means-ends analysis . Random trial and error involves randomly selecting a legal move and applying it to create a new problem state, and repeating that process until the goal state is reached. Random trial and error may work for simple problems but is not efficient for complex ones. Hill climbing involves selecting the legal move that moves the problem solver closer to the goal state. Hill climbing will not work for problems in which the problem solver must take a move that temporarily moves away from the goal as is required in many problems.

Means-ends analysis involves creating goals and seeking moves that can accomplish the goal. If a goal cannot be directly accomplished, a subgoal is created to remove one or more obstacles. Newell and Simon ( 1972 ) successfully used means-ends analysis as the search heuristic in a computer program aimed at general problem solving, that is, solving a diverse collection of problems. However, people may also use specific heuristics that are designed to work for specific problem-solving situations (Gigerenzer, Todd, & ABC Research Group, 1999 ; Kahneman & Tversky, 1984 ).

Current and Future Issues in Problem Solving

Eight current issues in problem solving involve decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific problem solving, everyday thinking, and the cognitive neuroscience of problem solving.

Decision Making

Decision making refers to the cognitive processing involved in choosing between two or more alternatives (Baron, 2000 ; Markman & Medin, 2002 ). For example, a decision-making task may involve choosing between getting $240 for sure or having a 25% change of getting $1000. According to economic theories such as expected value theory, people should chose the second option, which is worth $250 (i.e., .25 x $1000) rather than the first option, which is worth $240 (1.00 x $240), but psychological research shows that most people prefer the first option (Kahneman & Tversky, 1984 ).

Research on decision making has generated three classes of theories (Markman & Medin, 2002 ): descriptive theories, such as prospect theory (Kahneman & Tversky), which are based on the ideas that people prefer to overweight the cost of a loss and tend to overestimate small probabilities; heuristic theories, which are based on the idea that people use a collection of short-cut strategies such as the availability heuristic (Gigerenzer et al., 1999 ; Kahneman & Tversky, 2000 ); and constructive theories, such as mental accounting (Kahneman & Tversky, 2000 ), in which people build a narrative to justify their choices to themselves. Future research is needed to examine decision making in more realistic settings.

Intelligence and Creativity

Although researchers do not have complete consensus on the definition of intelligence (Sternberg, 1990 ), it is reasonable to view intelligence as the ability to learn or adapt to new situations. Fluid intelligence refers to the potential to solve problems without any relevant knowledge, whereas crystallized intelligence refers to the potential to solve problems based on relevant prior knowledge (Sternberg & Gregorenko, 2003 ). As people gain more experience in a field, their problem-solving performance depends more on crystallized intelligence (i.e., domain knowledge) than on fluid intelligence (i.e., general ability) (Sternberg & Gregorenko, 2003 ). The ability to monitor and manage one’s cognitive processing during problem solving—which can be called metacognition —is an important aspect of intelligence (Sternberg, 1990 ). Research is needed to pinpoint the knowledge that is needed to support intelligent performance on problem-solving tasks.

Creativity refers to the ability to generate ideas that are original (i.e., other people do not think of the same idea) and functional (i.e., the idea works; Sternberg, 1999 ). Creativity is often measured using tests of divergent thinking —that is, generating as many solutions as possible for a problem (Guilford, 1967 ). For example, the uses test asks people to list as many uses as they can think of for a brick. Creativity is different from intelligence, and it is at the heart of creative problem solving—generating a novel solution to a problem that the problem solver has never seen before. An important research question concerns whether creative problem solving depends on specific knowledge or creativity ability in general.

Teaching of Thinking Skills

How can people learn to be better problem solvers? Mayer ( 2008 ) proposes four questions concerning teaching of thinking skills:

What to teach —Successful programs attempt to teach small component skills (such as how to generate and evaluate hypotheses) rather than improve the mind as a single monolithic skill (Covington, Crutchfield, Davies, & Olton, 1974 ). How to teach —Successful programs focus on modeling the process of problem solving rather than solely reinforcing the product of problem solving (Bloom & Broder, 1950 ). Where to teach —Successful programs teach problem-solving skills within the specific context they will be used rather than within a general course on how to solve problems (Nickerson, 1999 ). When to teach —Successful programs teaching higher order skills early rather than waiting until lower order skills are completely mastered (Tharp & Gallimore, 1988 ).

Overall, research on teaching of thinking skills points to the domain specificity of problem solving; that is, successful problem solving depends on the problem solver having domain knowledge that is relevant to the problem-solving task.

Expert Problem Solving

Research on expertise is concerned with differences between how experts and novices solve problems (Ericsson, Feltovich, & Hoffman, 2006 ). Expertise can be defined in terms of time (e.g., 10 years of concentrated experience in a field), performance (e.g., earning a perfect score on an assessment), or recognition (e.g., receiving a Nobel Prize or becoming Grand Master in chess). For example, in classic research conducted in the 1940s, de Groot ( 1965 ) found that chess experts did not have better general memory than chess novices, but they did have better domain-specific memory for the arrangement of chess pieces on the board. Chase and Simon ( 1973 ) replicated this result in a better controlled experiment. An explanation is that experts have developed schemas that allow them to chunk collections of pieces into a single configuration.

In another landmark study, Larkin et al. ( 1980 ) compared how experts (e.g., physics professors) and novices (e.g., first-year physics students) solved textbook physics problems about motion. Experts tended to work forward from the given information to the goal, whereas novices tended to work backward from the goal to the givens using a means-ends analysis strategy. Experts tended to store their knowledge in an integrated way, whereas novices tended to store their knowledge in isolated fragments. In another study, Chi, Feltovich, and Glaser ( 1981 ) found that experts tended to focus on the underlying physics concepts (such as conservation of energy), whereas novices tended to focus on the surface features of the problem (such as inclined planes or springs). Overall, research on expertise is useful in pinpointing what experts know that is different from what novices know. An important theme is that experts rely on domain-specific knowledge rather than solely general cognitive ability.

Analogical Reasoning

Analogical reasoning occurs when people solve one problem by using their knowledge about another problem (Holyoak, 2005 ). For example, suppose a problem solver learns how to solve a problem in one context using one solution method and then is given a problem in another context that requires the same solution method. In this case, the problem solver must recognize that the new problem has structural similarity to the old problem (i.e., it may be solved by the same method), even though they do not have surface similarity (i.e., the cover stories are different). Three steps in analogical reasoning are recognizing —seeing that a new problem is similar to a previously solved problem; abstracting —finding the general method used to solve the old problem; and mapping —using that general method to solve the new problem.

Research on analogical reasoning shows that people often do not recognize that a new problem can be solved by the same method as a previously solved problem (Holyoak, 2005 ). However, research also shows that successful analogical transfer to a new problem is more likely when the problem solver has experience with two old problems that have the same underlying structural features (i.e., they are solved by the same principle) but different surface features (i.e., they have different cover stories) (Holyoak, 2005 ). This finding is consistent with the idea of specific transfer of general principles as described in the section on “Transfer.”

Mathematical and Scientific Problem Solving

Research on mathematical problem solving suggests that five kinds of knowledge are needed to solve arithmetic word problems (Mayer, 2008 ):

Factual knowledge —knowledge about the characteristics of problem elements, such as knowing that there are 100 cents in a dollar Schematic knowledge —knowledge of problem types, such as being able to recognize time-rate-distance problems Strategic knowledge —knowledge of general methods, such as how to break a problem into parts Procedural knowledge —knowledge of processes, such as how to carry our arithmetic operations Attitudinal knowledge —beliefs about one’s mathematical problem-solving ability, such as thinking, “I am good at this”

People generally possess adequate procedural knowledge but may have difficulty in solving mathematics problems because they lack factual, schematic, strategic, or attitudinal knowledge (Mayer, 2008 ). Research is needed to pinpoint the role of domain knowledge in mathematical problem solving.

Research on scientific problem solving shows that people harbor misconceptions, such as believing that a force is needed to keep an object in motion (McCloskey, 1983 ). Learning to solve science problems involves conceptual change, in which the problem solver comes to recognize that previous conceptions are wrong (Mayer, 2008 ). Students can be taught to engage in scientific reasoning such as hypothesis testing through direct instruction in how to control for variables (Chen & Klahr, 1999 ). A central theme of research on scientific problem solving concerns the role of domain knowledge.

Everyday Thinking

Everyday thinking refers to problem solving in the context of one’s life outside of school. For example, children who are street vendors tend to use different procedures for solving arithmetic problems when they are working on the streets than when they are in school (Nunes, Schlieman, & Carraher, 1993 ). This line of research highlights the role of situated cognition —the idea that thinking always is shaped by the physical and social context in which it occurs (Robbins & Aydede, 2009 ). Research is needed to determine how people solve problems in authentic contexts.

Cognitive Neuroscience of Problem Solving

The cognitive neuroscience of problem solving is concerned with the brain activity that occurs during problem solving. For example, using fMRI brain imaging methodology, Goel ( 2005 ) found that people used the language areas of the brain to solve logical reasoning problems presented in sentences (e.g., “All dogs are pets…”) and used the spatial areas of the brain to solve logical reasoning problems presented in abstract letters (e.g., “All D are P…”). Cognitive neuroscience holds the potential to make unique contributions to the study of problem solving.

Problem solving has always been a topic at the fringe of cognitive psychology—too complicated to study intensively but too important to completely ignore. Problem solving—especially in realistic environments—is messy in comparison to studying elementary processes in cognition. The field remains fragmented in the sense that topics such as decision making, reasoning, intelligence, expertise, mathematical problem solving, everyday thinking, and the like are considered to be separate topics, each with its own separate literature. Yet some recurring themes are the role of domain-specific knowledge in problem solving and the advantages of studying problem solving in authentic contexts.

Future Directions

Some important issues for future research include the three classic issues examined in this chapter—the nature of problem-solving transfer (i.e., How are people able to use what they know about previous problem solving to help them in new problem solving?), the nature of insight (e.g., What is the mechanism by which a creative solution is constructed?), and heuristics (e.g., What are some teachable strategies for problem solving?). In addition, future research in problem solving should continue to pinpoint the role of domain-specific knowledge in problem solving, the nature of cognitive ability in problem solving, how to help people develop proficiency in solving problems, and how to provide aids for problem solving.

Anderson L. W. , Krathwohl D. R. , Airasian P. W. , Cruikshank K. A. , Mayer R. E. , Pintrich P. R. , Raths, J., & Wittrock M. C. ( 2001 ). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York : Longman.

Baron J. ( 2000 ). Thinking and deciding (3rd ed.). New York : Cambridge University Press.

Google Scholar

Google Preview

Bloom B. S. , & Broder B. J. ( 1950 ). Problem-solving processes of college students: An exploratory investigation. Chicago : University of Chicago Press.

Chase W. G. , & Simon H. A. ( 1973 ). Perception in chess.   Cognitive Psychology, 4, 55–81.

Chen Z. , & Klahr D. ( 1999 ). All other things being equal: Acquisition and transfer of the control of variable strategy . Child Development, 70, 1098–1120.

Chi M. T. H. , Feltovich P. J. , & Glaser R. ( 1981 ). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

Covington M. V. , Crutchfield R. S. , Davies L. B. , & Olton R. M. ( 1974 ). The productive thinking program. Columbus, OH : Merrill.

de Groot A. D. ( 1965 ). Thought and choice in chess. The Hague, The Netherlands : Mouton.

Duncker K. ( 1945 ). On problem solving.   Psychological Monographs, 58 (3) (Whole No. 270).

Ericsson K. A. , Feltovich P. J. , & Hoffman R. R. (Eds.). ( 2006 ). The Cambridge handbook of expertise and expert performance. New York : Cambridge University Press.

Fridja N. H. , & de Groot A. D. ( 1982 ). Otto Selz: His contribution to psychology. The Hague, The Netherlands : Mouton.

Gentner D. , & Stevens A. L. (Eds.). ( 1983 ). Mental models. Hillsdale, NJ : Erlbaum.

Gigerenzer G. , Todd P. M. , & ABC Research Group (Eds.). ( 1999 ). Simple heuristics that make us smart. Oxford, England : Oxford University Press.

Goel V. ( 2005 ). Cognitive neuroscience of deductive reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 475–492). New York : Cambridge University Press.

Guilford J. P. ( 1967 ). The nature of human intelligence. New York : McGraw-Hill.

Holyoak K. J. ( 2005 ). Analogy. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 117–142). New York : Cambridge University Press.

Humphrey G. ( 1963 ). Thinking: An introduction to experimental psychology. New York : Wiley.

Judd C. H. ( 1908 ). The relation of special training and general intelligence. Educational Review, 36, 28–42.

Kahneman D. , & Tversky A. ( 1984 ). Choices, values, and frames. American Psychologist, 39, 341–350.

Kahneman D. , & Tversky A. (Eds.). ( 2000 ). Choices, values, and frames. New York : Cambridge University Press.

Kohler W. ( 1925 ). The mentality of apes. New York : Liveright.

Larkin J. H. , McDermott J. , Simon D. P. , & Simon H. A. ( 1980 ). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.

Luchins A. ( 1942 ). Mechanization in problem solving.   Psychological Monographs, 54 (6) (Whole No. 248).

Mandler J. M. , & Mandler G. ( 1964 ). Thinking from associationism to Gestalt. New York : Wiley.

Markman A. B. , & Medin D. L. ( 2002 ). Decision making. In D. Medin (Ed.), Stevens’ handbook of experimental psychology, Vol. 2. Memory and cognitive processes (2nd ed., pp. 413–466). New York : Wiley.

Mayer R. E. ( 1992 ). Thinking, problem solving, cognition (2nd ed). New York : Freeman.

Mayer R. E. ( 1995 ). The search for insight: Grappling with Gestalt psychology’s unanswered questions. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 3–32). Cambridge, MA : MIT Press.

Mayer R. E. ( 2008 ). Learning and instruction. Upper Saddle River, NJ : Merrill Prentice Hall.

Mayer R. E. ( 2009 ). Information processing. In T. L. Good (Ed.), 21st century education: A reference handbook (pp. 168–174). Thousand Oaks, CA : Sage.

Mayer R. E. , & Wittrock M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ : Erlbaum.

McCloskey M. ( 1983 ). Intuitive physics.   Scientific American, 248 (4), 122–130.

Metcalfe J. , & Wiebe D. ( 1987 ). Intuition in insight and non-insight problem solving. Memory and Cognition, 15, 238–246.

Newell A. , & Simon H. A. ( 1972 ). Human problem solving. Englewood Cliffs, NJ : Prentice-Hall.

Nickerson R. S. ( 1999 ). Enhancing creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 392–430). New York : Cambridge University Press.

Nunes T. , Schliemann A. D. , & Carraher D. W , ( 1993 ). Street mathematics and school mathematics. Cambridge, England : Cambridge University Press.

Robbins P. , & Aydede M. (Eds.). ( 2009 ). The Cambridge handbook of situated cognition. New York : Cambridge University Press.

Rogers T. T. , & McClelland J. L. ( 2004 ). Semantic cognition: A parallel distributed processing approach. Cambridge, MA : MIT Press.

Singley M. K. , & Anderson J. R. ( 1989 ). The transfer of cognitive skill. Cambridge, MA : Harvard University Press.

Sternberg R. J. ( 1990 ). Metaphors of mind: Conceptions of the nature of intelligence. New York : Cambridge University Press.

Sternberg R. J. ( 1999 ). Handbook of creativity. New York : Cambridge University Press.

Sternberg R. J. , & Gregorenko E. L. (Eds.). ( 2003 ). The psychology of abilities, competencies, and expertise. New York : Cambridge University Press.

Tharp R. G. , & Gallimore R. ( 1988 ). Rousing minds to life: Teaching, learning, and schooling in social context. New York : Cambridge University Press.

Thorndike E. L. ( 1911 ). Animal intelligence. New York: Hafner.

Thorndike E. L. , & Woodworth R. S. ( 1901 ). The influence of improvement in one mental function upon the efficiency of other functions. Psychological Review, 8, 247–261.

Wertheimer M. ( 1959 ). Productive thinking. New York : Harper and Collins.

Wundt W. ( 1973 ). An introduction to experimental psychology. New York : Arno Press. (Original work published in 1911).

Further Reading

Baron, J. ( 2008 ). Thinking and deciding (4th ed). New York: Cambridge University Press.

Duncker, K. ( 1945 ). On problem solving. Psychological Monographs , 58(3) (Whole No. 270).

Holyoak, K. J. , & Morrison, R. G. ( 2005 ). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press.

Mayer, R. E. , & Wittrock, M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.

Sternberg, R. J. , & Ben-Zeev, T. ( 2001 ). Complex cognition: The psychology of human thought . New York: Oxford University Press.

Weisberg, R. W. ( 2006 ). Creativity . New York: Wiley.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

CJA/426: Grant Writing and Funding

Identifying funding resources for criminal justice initiatives.

  • Wardle, L. (2008). Winning strategies for law enforcement grant funding. Law Enforcement Technology, 35(8), 74-78.

Note: We do our best to ensure these citations are correct within our system's constraints. We suggest checking your citations to make sure they meet current APA standards.

  • APA Style: Reference Examples This link opens in a new window

Pen on Money

Have a question or need help?

  • Last Updated: Jul 25, 2023 8:54 AM
  • URL: https://library.phoenix.edu/CJA426rZ

How to master the seven-step problem-solving process

In this episode of the McKinsey Podcast , Simon London speaks with Charles Conn, CEO of venture-capital firm Oxford Sciences Innovation, and McKinsey senior partner Hugo Sarrazin about the complexities of different problem-solving strategies.

Podcast transcript

Simon London: Hello, and welcome to this episode of the McKinsey Podcast , with me, Simon London. What’s the number-one skill you need to succeed professionally? Salesmanship, perhaps? Or a facility with statistics? Or maybe the ability to communicate crisply and clearly? Many would argue that at the very top of the list comes problem solving: that is, the ability to think through and come up with an optimal course of action to address any complex challenge—in business, in public policy, or indeed in life.

Looked at this way, it’s no surprise that McKinsey takes problem solving very seriously, testing for it during the recruiting process and then honing it, in McKinsey consultants, through immersion in a structured seven-step method. To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and also with Charles Conn. Charles is a former McKinsey partner, entrepreneur, executive, and coauthor of the book Bulletproof Problem Solving: The One Skill That Changes Everything [John Wiley & Sons, 2018].

Charles and Hugo, welcome to the podcast. Thank you for being here.

Hugo Sarrazin: Our pleasure.

Charles Conn: It’s terrific to be here.

Simon London: Problem solving is a really interesting piece of terminology. It could mean so many different things. I have a son who’s a teenage climber. They talk about solving problems. Climbing is problem solving. Charles, when you talk about problem solving, what are you talking about?

Charles Conn: For me, problem solving is the answer to the question “What should I do?” It’s interesting when there’s uncertainty and complexity, and when it’s meaningful because there are consequences. Your son’s climbing is a perfect example. There are consequences, and it’s complicated, and there’s uncertainty—can he make that grab? I think we can apply that same frame almost at any level. You can think about questions like “What town would I like to live in?” or “Should I put solar panels on my roof?”

You might think that’s a funny thing to apply problem solving to, but in my mind it’s not fundamentally different from business problem solving, which answers the question “What should my strategy be?” Or problem solving at the policy level: “How do we combat climate change?” “Should I support the local school bond?” I think these are all part and parcel of the same type of question, “What should I do?”

I’m a big fan of structured problem solving. By following steps, we can more clearly understand what problem it is we’re solving, what are the components of the problem that we’re solving, which components are the most important ones for us to pay attention to, which analytic techniques we should apply to those, and how we can synthesize what we’ve learned back into a compelling story. That’s all it is, at its heart.

I think sometimes when people think about seven steps, they assume that there’s a rigidity to this. That’s not it at all. It’s actually to give you the scope for creativity, which often doesn’t exist when your problem solving is muddled.

Simon London: You were just talking about the seven-step process. That’s what’s written down in the book, but it’s a very McKinsey process as well. Without getting too deep into the weeds, let’s go through the steps, one by one. You were just talking about problem definition as being a particularly important thing to get right first. That’s the first step. Hugo, tell us about that.

Hugo Sarrazin: It is surprising how often people jump past this step and make a bunch of assumptions. The most powerful thing is to step back and ask the basic questions—“What are we trying to solve? What are the constraints that exist? What are the dependencies?” Let’s make those explicit and really push the thinking and defining. At McKinsey, we spend an enormous amount of time in writing that little statement, and the statement, if you’re a logic purist, is great. You debate. “Is it an ‘or’? Is it an ‘and’? What’s the action verb?” Because all these specific words help you get to the heart of what matters.

Want to subscribe to The McKinsey Podcast ?

Simon London: So this is a concise problem statement.

Hugo Sarrazin: Yeah. It’s not like “Can we grow in Japan?” That’s interesting, but it is “What, specifically, are we trying to uncover in the growth of a product in Japan? Or a segment in Japan? Or a channel in Japan?” When you spend an enormous amount of time, in the first meeting of the different stakeholders, debating this and having different people put forward what they think the problem definition is, you realize that people have completely different views of why they’re here. That, to me, is the most important step.

Charles Conn: I would agree with that. For me, the problem context is critical. When we understand “What are the forces acting upon your decision maker? How quickly is the answer needed? With what precision is the answer needed? Are there areas that are off limits or areas where we would particularly like to find our solution? Is the decision maker open to exploring other areas?” then you not only become more efficient, and move toward what we call the critical path in problem solving, but you also make it so much more likely that you’re not going to waste your time or your decision maker’s time.

How often do especially bright young people run off with half of the idea about what the problem is and start collecting data and start building models—only to discover that they’ve really gone off half-cocked.

Hugo Sarrazin: Yeah.

Charles Conn: And in the wrong direction.

Simon London: OK. So step one—and there is a real art and a structure to it—is define the problem. Step two, Charles?

Charles Conn: My favorite step is step two, which is to use logic trees to disaggregate the problem. Every problem we’re solving has some complexity and some uncertainty in it. The only way that we can really get our team working on the problem is to take the problem apart into logical pieces.

What we find, of course, is that the way to disaggregate the problem often gives you an insight into the answer to the problem quite quickly. I love to do two or three different cuts at it, each one giving a bit of a different insight into what might be going wrong. By doing sensible disaggregations, using logic trees, we can figure out which parts of the problem we should be looking at, and we can assign those different parts to team members.

Simon London: What’s a good example of a logic tree on a sort of ratable problem?

Charles Conn: Maybe the easiest one is the classic profit tree. Almost in every business that I would take a look at, I would start with a profit or return-on-assets tree. In its simplest form, you have the components of revenue, which are price and quantity, and the components of cost, which are cost and quantity. Each of those can be broken out. Cost can be broken into variable cost and fixed cost. The components of price can be broken into what your pricing scheme is. That simple tree often provides insight into what’s going on in a business or what the difference is between that business and the competitors.

If we add the leg, which is “What’s the asset base or investment element?”—so profit divided by assets—then we can ask the question “Is the business using its investments sensibly?” whether that’s in stores or in manufacturing or in transportation assets. I hope we can see just how simple this is, even though we’re describing it in words.

When I went to work with Gordon Moore at the Moore Foundation, the problem that he asked us to look at was “How can we save Pacific salmon?” Now, that sounds like an impossible question, but it was amenable to precisely the same type of disaggregation and allowed us to organize what became a 15-year effort to improve the likelihood of good outcomes for Pacific salmon.

Simon London: Now, is there a danger that your logic tree can be impossibly large? This, I think, brings us onto the third step in the process, which is that you have to prioritize.

Charles Conn: Absolutely. The third step, which we also emphasize, along with good problem definition, is rigorous prioritization—we ask the questions “How important is this lever or this branch of the tree in the overall outcome that we seek to achieve? How much can I move that lever?” Obviously, we try and focus our efforts on ones that have a big impact on the problem and the ones that we have the ability to change. With salmon, ocean conditions turned out to be a big lever, but not one that we could adjust. We focused our attention on fish habitats and fish-harvesting practices, which were big levers that we could affect.

People spend a lot of time arguing about branches that are either not important or that none of us can change. We see it in the public square. When we deal with questions at the policy level—“Should you support the death penalty?” “How do we affect climate change?” “How can we uncover the causes and address homelessness?”—it’s even more important that we’re focusing on levers that are big and movable.

Would you like to learn more about our Strategy & Corporate Finance Practice ?

Simon London: Let’s move swiftly on to step four. You’ve defined your problem, you disaggregate it, you prioritize where you want to analyze—what you want to really look at hard. Then you got to the work plan. Now, what does that mean in practice?

Hugo Sarrazin: Depending on what you’ve prioritized, there are many things you could do. It could be breaking the work among the team members so that people have a clear piece of the work to do. It could be defining the specific analyses that need to get done and executed, and being clear on time lines. There’s always a level-one answer, there’s a level-two answer, there’s a level-three answer. Without being too flippant, I can solve any problem during a good dinner with wine. It won’t have a whole lot of backing.

Simon London: Not going to have a lot of depth to it.

Hugo Sarrazin: No, but it may be useful as a starting point. If the stakes are not that high, that could be OK. If it’s really high stakes, you may need level three and have the whole model validated in three different ways. You need to find a work plan that reflects the level of precision, the time frame you have, and the stakeholders you need to bring along in the exercise.

Charles Conn: I love the way you’ve described that, because, again, some people think of problem solving as a linear thing, but of course what’s critical is that it’s iterative. As you say, you can solve the problem in one day or even one hour.

Charles Conn: We encourage our teams everywhere to do that. We call it the one-day answer or the one-hour answer. In work planning, we’re always iterating. Every time you see a 50-page work plan that stretches out to three months, you know it’s wrong. It will be outmoded very quickly by that learning process that you described. Iterative problem solving is a critical part of this. Sometimes, people think work planning sounds dull, but it isn’t. It’s how we know what’s expected of us and when we need to deliver it and how we’re progressing toward the answer. It’s also the place where we can deal with biases. Bias is a feature of every human decision-making process. If we design our team interactions intelligently, we can avoid the worst sort of biases.

Simon London: Here we’re talking about cognitive biases primarily, right? It’s not that I’m biased against you because of your accent or something. These are the cognitive biases that behavioral sciences have shown we all carry around, things like anchoring, overoptimism—these kinds of things.

Both: Yeah.

Charles Conn: Availability bias is the one that I’m always alert to. You think you’ve seen the problem before, and therefore what’s available is your previous conception of it—and we have to be most careful about that. In any human setting, we also have to be careful about biases that are based on hierarchies, sometimes called sunflower bias. I’m sure, Hugo, with your teams, you make sure that the youngest team members speak first. Not the oldest team members, because it’s easy for people to look at who’s senior and alter their own creative approaches.

Hugo Sarrazin: It’s helpful, at that moment—if someone is asserting a point of view—to ask the question “This was true in what context?” You’re trying to apply something that worked in one context to a different one. That can be deadly if the context has changed, and that’s why organizations struggle to change. You promote all these people because they did something that worked well in the past, and then there’s a disruption in the industry, and they keep doing what got them promoted even though the context has changed.

Simon London: Right. Right.

Hugo Sarrazin: So it’s the same thing in problem solving.

Charles Conn: And it’s why diversity in our teams is so important. It’s one of the best things about the world that we’re in now. We’re likely to have people from different socioeconomic, ethnic, and national backgrounds, each of whom sees problems from a slightly different perspective. It is therefore much more likely that the team will uncover a truly creative and clever approach to problem solving.

Simon London: Let’s move on to step five. You’ve done your work plan. Now you’ve actually got to do the analysis. The thing that strikes me here is that the range of tools that we have at our disposal now, of course, is just huge, particularly with advances in computation, advanced analytics. There’s so many things that you can apply here. Just talk about the analysis stage. How do you pick the right tools?

Charles Conn: For me, the most important thing is that we start with simple heuristics and explanatory statistics before we go off and use the big-gun tools. We need to understand the shape and scope of our problem before we start applying these massive and complex analytical approaches.

Simon London: Would you agree with that?

Hugo Sarrazin: I agree. I think there are so many wonderful heuristics. You need to start there before you go deep into the modeling exercise. There’s an interesting dynamic that’s happening, though. In some cases, for some types of problems, it is even better to set yourself up to maximize your learning. Your problem-solving methodology is test and learn, test and learn, test and learn, and iterate. That is a heuristic in itself, the A/B testing that is used in many parts of the world. So that’s a problem-solving methodology. It’s nothing different. It just uses technology and feedback loops in a fast way. The other one is exploratory data analysis. When you’re dealing with a large-scale problem, and there’s so much data, I can get to the heuristics that Charles was talking about through very clever visualization of data.

You test with your data. You need to set up an environment to do so, but don’t get caught up in neural-network modeling immediately. You’re testing, you’re checking—“Is the data right? Is it sound? Does it make sense?”—before you launch too far.

Simon London: You do hear these ideas—that if you have a big enough data set and enough algorithms, they’re going to find things that you just wouldn’t have spotted, find solutions that maybe you wouldn’t have thought of. Does machine learning sort of revolutionize the problem-solving process? Or are these actually just other tools in the toolbox for structured problem solving?

Charles Conn: It can be revolutionary. There are some areas in which the pattern recognition of large data sets and good algorithms can help us see things that we otherwise couldn’t see. But I do think it’s terribly important we don’t think that this particular technique is a substitute for superb problem solving, starting with good problem definition. Many people use machine learning without understanding algorithms that themselves can have biases built into them. Just as 20 years ago, when we were doing statistical analysis, we knew that we needed good model definition, we still need a good understanding of our algorithms and really good problem definition before we launch off into big data sets and unknown algorithms.

Simon London: Step six. You’ve done your analysis.

Charles Conn: I take six and seven together, and this is the place where young problem solvers often make a mistake. They’ve got their analysis, and they assume that’s the answer, and of course it isn’t the answer. The ability to synthesize the pieces that came out of the analysis and begin to weave those into a story that helps people answer the question “What should I do?” This is back to where we started. If we can’t synthesize, and we can’t tell a story, then our decision maker can’t find the answer to “What should I do?”

Simon London: But, again, these final steps are about motivating people to action, right?

Charles Conn: Yeah.

Simon London: I am slightly torn about the nomenclature of problem solving because it’s on paper, right? Until you motivate people to action, you actually haven’t solved anything.

Charles Conn: I love this question because I think decision-making theory, without a bias to action, is a waste of time. Everything in how I approach this is to help people take action that makes the world better.

Simon London: Hence, these are absolutely critical steps. If you don’t do this well, you’ve just got a bunch of analysis.

Charles Conn: We end up in exactly the same place where we started, which is people speaking across each other, past each other in the public square, rather than actually working together, shoulder to shoulder, to crack these important problems.

Simon London: In the real world, we have a lot of uncertainty—arguably, increasing uncertainty. How do good problem solvers deal with that?

Hugo Sarrazin: At every step of the process. In the problem definition, when you’re defining the context, you need to understand those sources of uncertainty and whether they’re important or not important. It becomes important in the definition of the tree.

You need to think carefully about the branches of the tree that are more certain and less certain as you define them. They don’t have equal weight just because they’ve got equal space on the page. Then, when you’re prioritizing, your prioritization approach may put more emphasis on things that have low probability but huge impact—or, vice versa, may put a lot of priority on things that are very likely and, hopefully, have a reasonable impact. You can introduce that along the way. When you come back to the synthesis, you just need to be nuanced about what you’re understanding, the likelihood.

Often, people lack humility in the way they make their recommendations: “This is the answer.” They’re very precise, and I think we would all be well-served to say, “This is a likely answer under the following sets of conditions” and then make the level of uncertainty clearer, if that is appropriate. It doesn’t mean you’re always in the gray zone; it doesn’t mean you don’t have a point of view. It just means that you can be explicit about the certainty of your answer when you make that recommendation.

Simon London: So it sounds like there is an underlying principle: “Acknowledge and embrace the uncertainty. Don’t pretend that it isn’t there. Be very clear about what the uncertainties are up front, and then build that into every step of the process.”

Hugo Sarrazin: Every step of the process.

Simon London: Yeah. We have just walked through a particular structured methodology for problem solving. But, of course, this is not the only structured methodology for problem solving. One that is also very well-known is design thinking, which comes at things very differently. So, Hugo, I know you have worked with a lot of designers. Just give us a very quick summary. Design thinking—what is it, and how does it relate?

Hugo Sarrazin: It starts with an incredible amount of empathy for the user and uses that to define the problem. It does pause and go out in the wild and spend an enormous amount of time seeing how people interact with objects, seeing the experience they’re getting, seeing the pain points or joy—and uses that to infer and define the problem.

Simon London: Problem definition, but out in the world.

Hugo Sarrazin: With an enormous amount of empathy. There’s a huge emphasis on empathy. Traditional, more classic problem solving is you define the problem based on an understanding of the situation. This one almost presupposes that we don’t know the problem until we go see it. The second thing is you need to come up with multiple scenarios or answers or ideas or concepts, and there’s a lot of divergent thinking initially. That’s slightly different, versus the prioritization, but not for long. Eventually, you need to kind of say, “OK, I’m going to converge again.” Then you go and you bring things back to the customer and get feedback and iterate. Then you rinse and repeat, rinse and repeat. There’s a lot of tactile building, along the way, of prototypes and things like that. It’s very iterative.

Simon London: So, Charles, are these complements or are these alternatives?

Charles Conn: I think they’re entirely complementary, and I think Hugo’s description is perfect. When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that’s very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use contrasting teams, so that we do have divergent thinking. The best teams allow divergent thinking to bump them off whatever their initial biases in problem solving are. For me, design thinking gives us a constant reminder of creativity, empathy, and the tactile nature of problem solving, but it’s absolutely complementary, not alternative.

Simon London: I think, in a world of cross-functional teams, an interesting question is do people with design-thinking backgrounds really work well together with classical problem solvers? How do you make that chemistry happen?

Hugo Sarrazin: Yeah, it is not easy when people have spent an enormous amount of time seeped in design thinking or user-centric design, whichever word you want to use. If the person who’s applying classic problem-solving methodology is very rigid and mechanical in the way they’re doing it, there could be an enormous amount of tension. If there’s not clarity in the role and not clarity in the process, I think having the two together can be, sometimes, problematic.

The second thing that happens often is that the artifacts the two methodologies try to gravitate toward can be different. Classic problem solving often gravitates toward a model; design thinking migrates toward a prototype. Rather than writing a big deck with all my supporting evidence, they’ll bring an example, a thing, and that feels different. Then you spend your time differently to achieve those two end products, so that’s another source of friction.

Now, I still think it can be an incredibly powerful thing to have the two—if there are the right people with the right mind-set, if there is a team that is explicit about the roles, if we’re clear about the kind of outcomes we are attempting to bring forward. There’s an enormous amount of collaborativeness and respect.

Simon London: But they have to respect each other’s methodology and be prepared to flex, maybe, a little bit, in how this process is going to work.

Hugo Sarrazin: Absolutely.

Simon London: The other area where, it strikes me, there could be a little bit of a different sort of friction is this whole concept of the day-one answer, which is what we were just talking about in classical problem solving. Now, you know that this is probably not going to be your final answer, but that’s how you begin to structure the problem. Whereas I would imagine your design thinkers—no, they’re going off to do their ethnographic research and get out into the field, potentially for a long time, before they come back with at least an initial hypothesis.

Want better strategies? Become a bulletproof problem solver

Want better strategies? Become a bulletproof problem solver

Hugo Sarrazin: That is a great callout, and that’s another difference. Designers typically will like to soak into the situation and avoid converging too quickly. There’s optionality and exploring different options. There’s a strong belief that keeps the solution space wide enough that you can come up with more radical ideas. If there’s a large design team or many designers on the team, and you come on Friday and say, “What’s our week-one answer?” they’re going to struggle. They’re not going to be comfortable, naturally, to give that answer. It doesn’t mean they don’t have an answer; it’s just not where they are in their thinking process.

Simon London: I think we are, sadly, out of time for today. But Charles and Hugo, thank you so much.

Charles Conn: It was a pleasure to be here, Simon.

Hugo Sarrazin: It was a pleasure. Thank you.

Simon London: And thanks, as always, to you, our listeners, for tuning into this episode of the McKinsey Podcast . If you want to learn more about problem solving, you can find the book, Bulletproof Problem Solving: The One Skill That Changes Everything , online or order it through your local bookstore. To learn more about McKinsey, you can of course find us at McKinsey.com.

Charles Conn is CEO of Oxford Sciences Innovation and an alumnus of McKinsey’s Sydney office. Hugo Sarrazin is a senior partner in the Silicon Valley office, where Simon London, a member of McKinsey Publishing, is also based.

Explore a career with us

Related articles.

Want better strategies? Become a bulletproof problem solver

Strategy to beat the odds

firo13_frth

Five routes to more innovative problem solving

Chasing red herrings: Memory of distractors causes fixation in creative problem solving

  • Published: 07 March 2018
  • Volume 46 , pages 671–684, ( 2018 )

Cite this article

the herring problem solving method

  • Zsolt Beda 1 &
  • Steven M. Smith 1  

2512 Accesses

14 Citations

Explore all metrics

Two experiments tested the red herring retrieval hypothesis, which states that fixation in creative problem solving is worse when memory for red herrings (i.e., inappropriate or incorrect solutions) is strengthened. In Experiment  1 , when associations between Remote Associates Test (RAT) problem words (e.g., COTTAGE, SWISS, CAKE) and related red herring words (e.g., hut, chocolate, icing) were strengthened via repetition, an encoding variable, fixation was found to increase. In Experiment  2 , when associations were formed between RAT problem contexts and red herrings, then subsequent reinstatement of problem contexts during RAT problem solving trials (as compared with showing new contexts) also worsened fixation effects. Our results add to the increasing body of research that connects memory with creative problem solving, and they suggest possible ways for overcoming fixation effects.

Similar content being viewed by others

Extending cognitive load theory to incorporate working memory resource depletion: evidence from the spacing effect.

the herring problem solving method

Theories of the generation effect and the impact of generation constraint: A meta-analytic review

the herring problem solving method

From Cognitive Load Theory to Collaborative Cognitive Load Theory

Avoid common mistakes on your manuscript.

A few years ago one of the authors spent some days in Florida in a small hotel on the beach. During one of his morning runs on the shore, he realized he had forgotten the name of his hotel. Having repeatedly stayed at another hotel on a similar Florida beach, the name of the previous hotel The Diplomat came to mind, blocking his memory of the correct hotel name. He only found out the name of his hotel when he got back from his run, it was The Prestige . This is an example of red herring retrieval, that is, a mental block that occurs when a wrong answer comes from memory, blocking the correct response. In this example, two factors influenced retrieval of the wrong answer: repetition (he had stayed at The Diplomat twice) and context (it was on a similar beach in Florida). In the present study we tested a laboratory version of red herring retrieval, examining the influence of two factors known to affect memory of such wrong answers’ retrieval, repetition and context.

Exposure to wrong answers has been shown to impede creative problem solving (Smith & Blankenship, 1989 , 1991 ; Wood & Pennington, 1973 ), a finding referred to as a fixation effect (e.g., Kohn & Smith, 2009 ; Smith, 1995a , 1995b , 2003 ; Smith & Blankenship, 1989 , 1991 ; Wiley, 1998 ). Some studies of fixation effects have presented these wrong answers, what we will refer to as red herrings , simultaneously with problems (e.g., Smith & Blankenship, 1989 , 1991 ), others have pre-exposed participants to these misleading stimuli (e.g., Smith & Blankenship, 1991 ; Wood and Pennington, 1973 ), suggesting that such fixation effects might be attributable to retrieval of the wrong answers. Do manipulations of variables that affect long term memory retrieval of red herrings affect observed levels of fixation in creative problem solving? Although it has been implied by previous studies that the memory strength of red herrings determines the strength of the subsequent fixation effect that occurs, in fact, there have been no previous reports of tests of this principle, what we will refer to as the red herring retrieval hypothesis .

We use the term red herring rather than blocker because the term blocker implies both a cognitive process, response competition, and a result, namely, poorer performance. The presentation of misleading or wrong answers to problems might, or might not cause the intended reduction in performance, and even if they do, they may decrease problem solving performance via a different cognitive mechanism than response competition. Here, we use the term red herring to indicate the intended effect of such stimuli, that is, to divert the problem solver from the path that leads to a correct solution, just as the use of red herrings was intended to divert hunting hounds from the trails of game animals.

In the creative cognition literature (e.g., Finke, Ward, & Smith, 1992 ) many studies have examined fixation effects, that is, blocks to creative problem solving, which can be caused by various factors. For example, Duncker ( 1945 ) studied functional fixedness , that is, fixation based on the commonly known functions of experimental objects. In another example, Luchins and Luchins ( 1959 ) demonstrated the negative effects of mental set with their Einstellung paradigm. Smith and Blankenship ( 1989 ) experimentally induced fixation by presenting clue words intended as red herrings for creative problem solving; they found that presenting red herrings reduced initial performance on rebus problems. Although fixation can have many different causes, the experiments of Smith and Blankenship ( 1989 ) indicate that remembered red herrings can cause a fixation effect.

In addition to the experiments of Smith and Blankenship ( 1989 ), other studies have also used the method of pre-exposure to red herrings before participants attempt creative problem solving. Some studies that have used Remote Associates Test (RAT) problems (Mednick, 1962 ) with this pre-exposure technique include Smith and Blankenship ( 1991 ), Vul and Pashler ( 2007 ) and Wood and Pennington ( 1973 ).

Furthermore, there have also been studies that experimentally pre-exposed participants to examples of responses to a subsequent creative idea generation task (Smith, Ward, & Schumacher, 1993 ; Landau & Leynes, 2004 ), or a brainstorming task in a group (Kohn & Smith, 2011 ). Such studies of conformity effects are similar to studies of fixation in creative problem solving because they show that participants are constrained to using features of the pre-exposed examples. If this happens in a group, initial ideas might even create a collaborative inhibition , which will impair the performance of the whole group working on the same problem (Weldon & Bellinger, 1997 ). There is also a growing literature on design fixation effects (Jansson & Smith, 1991 ; Chrysikou & Weisberg, 2005 ; Purcell et al., 1993 , Sio, Kotovsky, & Cagan, 2015 ; Vasconcelos et al., 2017 ), which shows that fixation to design examples, or even to past design works can create constraints when facing a task requiring a novel design solution. Thus, there are constraining effects of experimentally controlled stimuli that can impede creative cognition across a range of creative activities.

In a general sense, the RAT fixation paradigm that involves pre-exposure to red herrings resembles negative transfer paradigms that have been studied at least since Müller and Pilzecker ( 1900 ). Negative transfer is said to occur when prior learning causes poorer subsequent performance, such as poorer interpolated learning in retroactive interference experiments (e.g., Neill & Valdes, 1992 ). A lengthy body of literature exists that shows negative transfer using recall tests and other direct measures of memory, that is, tests in which the to-be-remembered events are explicitly referred to in the directions to participants. A smaller literature shows negative effects of prior learning on indirect measures of memory, that is, tests that do not refer to the events in question. Relative to direct measures of memory, such as cued recall, indirect measures, such as word fragment completion, anagram solution, or category production may involve different amounts of conscious recollection and automatic retrieval (Jacoby, 1998 ). Indirect memory measures can be affected, for example, by numbers of repetitions of target items (e.g., Jacoby & Dallas, 1981 ), and by manipulations of perceptual modality between encoding and test (e.g., Kirsner, Milech, & Standen, 1983 ; Scarborough, Gerard, & Cortese, 1979 ). In the present study we ask whether RAT problem solving, a test typically used to assess creativity (e.g., Benedek & Neubauer, 2013 ), can function as an indirect measure of memory. Given that RAT problems are solved by retrieving candidate associates to the test words, we assume that the RAT would be more of a conceptually-driven test, rather than a primarily data-driven one. Is RAT performance affected by encoding and retrieval manipulations (of red herrings), such as repetition and context reinstatement?

A negative transfer effect, with an indirect memory measure was demonstrated and studied by Smith and Tindell ( 1997 ), who used as blockers (or red herrings) words that were orthographically similar to word fragments that were subsequently tested. Smith and Tindell ( 1997 ) showed that this memory blocking effect with an indirect memory measure followed the predictions of the transfer appropriate processing theory; manipulations of level of processing at encoding did not influence the blocking effect seen on the primarily data-driven fragment completion test, but changes in perceptual modality (from auditory at encoding to visual at test) did influence the effect. Similar paradigms yielded similar results at Logan and Balota ( 2003 ), Landau and Leynes ( 2006 ), and Leynes, Brown, and Landau ( 2011 ). Lustig and Hasher ( 2001 ) reported similar findings in their study of implicit memory. Furthermore, Landau and Leynes ( 2006 ), who dubbed this finding the memory blocking effect (MBE), reported that neither time, nor depth of processing or awareness of the MBE affected the magnitude of the effect.

The other body of findings of negative transfer effects using an indirect memory measure come from exclusion tasks in the process dissociation procedure (e.g., Jacoby, Toth, & Yonelinas, 1993 ; Jacoby, 1998 ). For example, after reading a list of words, a participant may be asked to complete word stems without using words recollected from the previously encoded study list (e.g., Jacoby, 1998 ), or completes a cue-word+stem with a related word not from the study list (e.g., Jacoby, 1996 ). In these opposition tasks, automatic retrieval of forbidden items can supplant correct responding, but only when recollection of the studied responses fails. In the context of the present study, one may think of the forbidden (studied) responses on exclusion tasks as similar to red herrings that lead participants away from correct responses.

If fixation in creative problem solving can be increased by making red herrings more retrievable, then we can think of creative problem solving as a type of indirect memory measure, and fixation caused by retrieval of red herrings as analogous to other types of negative transfer effects. Our red herring retrieval hypothesis states that factors that make red herrings more retrievable should reduce creative problem solving performance, as measured with RAT problems.

Several studies have shown that pre-exposure to various types of red herrings can cause subsequent fixation or conformity effects in creative problem solving, creative idea generation and memory retrieval, however none of these studies has provided a test of the red herring retrieval hypothesis, which states that the memory strengths of red herrings determine the magnitude of a fixation effect. Alternatively, strengthening the retrievability of a red herring might decrease fixation effects if faster retrieval of red herrings allows them to be rejected more quickly. The faster one can put aside a wrong answer, the more able one will be to devote more mental resources to searching for the correct answer. We conducted the present experiments to test the different possible outcomes of increasing retrievability of red herrings.

In the present experiments a fixation effect was elicited using previously studied red herrings, to make it difficult for participants to solve Remote Associate Test (RAT) problems (Mednick, 1962 ). In the RAT, often used as a measure of creative ability (e.g., Benedek & Neubauer, 2013 ), there are three test words in each problem (e.g., COTTAGE - SWISS - CAKE.) The task is to find a single word that can be used to make a compound word or a two word phrase with each of the three test words. The solution for this particular test item is CHEESE (COTTAGE CHEESE, SWISS CHEESE, CHEESECAKE.) To elicit a fixation effect, paired associates were assigned to each of the three test words. These paired associates were conceptually related to the test words, but were not related to the solution. For example, for the RAT problem COTTAGE - SWISS - CAKE the red herring associates made the pairs COTTAGE - hut, SWISS - chocolate, CAKE - icing. We predicted that when the red herrings are made easier to recall, the observed fixation effect would be greater.

Numerous factors can affect the accessibility of events, including encoding and test manipulations. In the present study, we tested our red herring retrieval hypothesis by manipulating an encoding variable: number of practice trials, and a test variable: context reinstatement. If the red herrings are repeated and practiced more, then more of them should be retrieved when a triad of RAT words are presented. Repetition improves both recollection and automatic retrieval of items in memory (e.g., Jacoby & Dallas, 1981 ). Therefore, lower solution rates were expected when there were more repetitions and practice trials of red herring words, as compared with less practice. Similarly, the context manipulation was predicted to affect retrieval of red herrings on RAT trials: when the initial encoding context was reinstated, more red herrings were expected to be retrieved (e.g., Smith, 1979 ; Smith & Vela, 2001 ; Smith & Manzano, 2010 ; Smith et al., 2014 ), causing solution rates to suffer for those RAT problems. Several studies have reported context reinstatement effects with indirect memory measures (e.g., Parker, Gellatly, & Waterman, 1999 ; Smith, Heath, & Vella, 1990 ), but whether such effects are caused by automatic retrieval or conscious recollection may still be in question (see Mulligan, 2011 ; Smith et al., 2018 ). We expect to find context dependent fixation regardless of whether our manipulations of context affect conscious recollection, automatic retrieval, or both types of retrieval processes.

The method in the present experiments used a particularly robust paradigm for context-dependent memory effects, including the use of perceptually rich contexts (photo backgrounds of various environments), small context-to-item fans (only three words per context), and intentional encoding of items (red herrings, in our case) with their associated contexts (see Smith, 2013 ). Thus, we expected context reinstatement of red herrings, relative to non-reinstatement, to cause poorer performance on associated RAT problems (Experiments  1 and  2 ), and we expected that more practice with red herrings, relative to less practice, would cause poorer RAT solution rates (Experiment  1 ).

Experiment 1

Participants in Experiment  1 were given four tasks that were aimed at making sure that the photo contexts were well encoded (the context encoding task), that red herrings were associated with RAT test words (the paired associates encoding task), and that test word-red herring associations were strengthened (the retrieval practice task). After the red herrings, contexts, and RAT test words were encoded, the Remote Associates Test was given; each critical RAT triad was tested by being superimposed over a test context, which either reinstated the encoding contexts of red herrings, or presented a different context than the one seen for that triad at encoding. It was predicted that more practice with red herrings, relative to less practice, and context reinstatement at test, relative to non-reinstatement, would both decrease performance on critical RAT problems, because practice and context reinstatement should improve retrieval of red herrings. Our context reinstatement prediction, however, was predicated on the assumption that the three word-word associations created for each RAT triad would not outshine (or overpower) the weaker context-to-word associations (Smith & Vela, 2001 ).

Participants

Based on an a priori power analysis, our experiment needed approximately 72 participants to detect a medium sized effect (Cohen’s d = .5) with α = .05 and 1 − β = .95. Participants were undergraduate psychology students volunteering as participants to fulfill a course requirement. They could enroll for the particular time slots via a computerized database. The sessions were conducted with 3–15 participants at a time. Altogether we had 133 participants with 30, 32, 35 and 36 in four counterbalancing groups. The numbers of participants in the counterbalancing groups varied because participants could enroll themselves in any session of the experiment, and experiment sessions were randomly assigned to the counterbalancing conditions.

Design and materials

A total of 36 RAT problems were used in Experiment  1 . A RAT problem consists of three words, and the solution is a single word that is strongly associated with each of the three test words (e.g., COTTAGE - SWISS - CAKE, solution - CHEESE). The problems were selected from the Compound Remote Associate Problem compendium published by Bowden and Jung-Beeman ( 2003 ), using problems with high normed levels of solution rates. For each triad of RAT words, red herrings were generated, one red herring word for each of the three test words, resulting in three paired associates for each RAT problem (e.g., COTTAGE-hut, SWISS-chocolate, CAKE-icing). Test words, solution words, and red herring words were unique within our set of materials; none were repeated in other problems. All of the RAT test words were presented in capital letters and all of the red herrings in lowercase letters throughout the experiment. RAT problems, their solutions and their associated red herrings are shown in the Appendix . The items were presented as a PowerPoint slideshow shown on a large screen in clear view of the participants.

A total of 72 photo contexts, or photographs of places, were used in Experiment  1 . The photos showed familiar types of places, such as an airport or a restaurant, but the specific places were likely not known to our participants. Each photo context was assigned at random to a RAT problem, except that obvious pre-experimental associations of words and accompanying photos was avoided in each pairing. Stimulus words were shown in a red font and outlined with a yellow border, and they were superimposed over their accompanying photo contexts. On retrieval practice trials, the encoding contexts accompanying paired associates were the same contexts paired with those items at encoding. On the RAT, triads were tested either with the photo context of the red herrings’ encoding, or with a new photo, that is, a photo not seen before in the experiment.

A 2 (reinstatement, reinstated or new contexts at the test phase, a within-subjects variable) × 2 (repetition, zero or two retrieval practices, a within-subjects variable) × 4 (counterbalancing, a between-subjects variable) mixed design was used. The 36 RAT triads were randomly divided into four sets of nine triads, sets A, B, C, and D. In the first counterbalancing group (CB-1), items from set A were used for the zero-practice new-context condition, set B was used for the two-practice new-context condition, set C for the zero-practice reinstated-context condition, and set D for the two-practice reinstated-context condition. In CB-2, CB-3, and CB-4, each set of items was assigned to a different condition, so that across the four counterbalancing groups, each item was used in each treatment condition. The proportion of correctly solved RAT problems in the final phase of the experiment served as our dependent measure. Strict scoring was used, that is, no alternative solutions to the RAT problems were accepted.

The PowerPoint slideshow had four sections corresponding to the experimental tasks, context encoding, paired associates encoding, paired associates retrieval practice, and finally, the Remote Associates Test. Participants were initially told that they would complete several different tasks during the experiment and that they would receive instructions when it was time for each task. Each task consisted of 36 slides, one for each of the critical items, that were presented in an order randomized in blocks of six.

For the first task, context encoding, participants gave relatedness ratings on a 1–10 scale between each set of three red herring words and their background context. The backgrounds were not conceptually related to the red herrings in any obvious way. Participants had 8-sec to look at the screen, and write down their ratings.

For the next task, paired-associates encoding, participants tried to memorize triads of paired-associates consisting of the three test words each linked with its red herring word. Each triad of paired-associates was superimposed over the same photo context that had been seen with the triad’s red herring words at encoding. Each study trial of the paired-associates encoding task was 5-sec.

Following paired-associates encoding was the paired-associates retrieval practice task. For half of the items, on each trial of the retrieval practice task, participants were shown the three RAT words superimposed over their encoding context (only for items in the two-retrieval practices condition), and they tried to recall and write down the three words that had been the responses (the red herrings.) Participants had 10-sec for each practice trial. After 10-sec, the correct responses were displayed, and participants either circled their response if they got it right, or they wrote down the solutions they could not remember. This self-correction procedure took an additional 10-sec. There were two retrieval practice trials for each item in this condition; the two practice trials were evenly distributed, with at least 8–10 slides between the two trials.

The final task was the Remote Associates Test. For each problem, participants had 15-sec to think of the solution. The word triads were superimposed over either the encoding background for the associated red herrings (reinstated context condition) or a different context that had not been seen previously in the experiment (new context condition.) The order of the three words was never the same on the RAT task as it had been on the encoding or the retrieval practice tasks. No mention was made of the previous tasks in the instructions. The method of Experiment  1 is shown on Fig.  1 .

Experiment  1 method

A 2 ( context : reinstated, new context; a within-subjects variable) × 2 ( repetition : zero, two; a within-subjects variable) analysis of variance (ANOVA) was computed with the proportion of RAT problems solved as the dependent variable. Footnote 1 The main effect of repetition was significant [ F (1,132) = 5.167, p = .025, p a r t i a l η 2 = .038]; items that had two retrieval practices with red herrings, relative to items with no practice trials, had lower solution rates, as predicted by the red herring retrieval hypothesis. The main effect of context was not significant [ F (1,132) < 1, p = .541, p a r t i a l η 2 = .003]; although, numerically, the reinstated context condition was slightly worse than the new context condition, as predicted, the difference was small. The context X repetition interaction was not significant [ F (1,132) = 3.029, p = .084, p a r t i a l η 2 = .022]. Figure  2 shows the means for the four conditions. The proportion correctly solved was .44 ( S D = .19) in the reinstated-zero practice condition, .38 in the reinstated-two repetition condition ( S D = .2), .42 in the new-zero repetition condition ( S D = .19), and .41 in the new-two repetition condition ( S D = .18). Post-hoc paired comparisons of reinstated vs new context conditions were not significant in either the zero [ t (132) = .69, p = .49] or two retrieval practice [ t (132) = 1.61, p = .11] condition.

Mean proportion of correct solutions for the RAT as a function of the four conditions in Experiment  1 . The error bars represent 95% within-subjects CI

Mean relatedness rating on a 1–10 scale between the context pictures and the red herrings, in which 1 meant extremely unrelated and 10 meant highly related, was 2.85 ( S D = 1.6). A paired-samples t-test showed that participants during the second retrieval practice trial ( M = .78, S D = .2) remembered the red herrings significantly better [ t (255) = 37.37, p < .001, d = 2.34] than during the first retrieval practice trial ( M = .46, S D = .18).

Experiment  1 tested whether repetition and context reinstatement would modulate the strength of the fixation effect caused by presentation of red herrings. As predicted, with more retrieval practices of the red herrings, solution rates for the RAT items suffered. Two extra retrieval practice trials decreased solution rates by 4%, an effect size of p a r t i a l η 2 = .038. Because Experiment  1 did not include an unprimed baseline condition, it is not clear how this effect compares with the overall fixation effect that may have occurred. Experiment  2 included an unprimed condition.

The main effect of context reinstatement was not significant. The methods that we used to observe context-dependent fixation have been shown to produce robust context-dependent memory effects (e.g., (Smith, 2013 )). The context stimuli that we used were photographs of real places, making them “rich” enough to yield robust effects. There were only three paired-associates per context, a small contextual fan size. Our context encoding task ensured that items and contexts had been directly associated. These methods have yielded robust context-dependent memory effects for tests of free recall (Smith & Manzano 2010 , Smith et al., 2014 ), recognition (Shahabuddin & Smith, 2016 ), and paired-associates recall (Smith & Handy, 2014 , 2016 ; Smith et al., 2014 ). Why, then, was the effect of context reinstatement not significant in Experiment  2

One possible reason for our failure to detect context reinstatement-enhanced fixation, is, of course, that there may not be an effect of context reinstatement on experimentally-induced fixation effects. Alternatively, context reinstatement may truly influence fixation, but effect size may be much smaller than what we observed in Experiment  1 for the effect of repetition on fixation, and we may have had insufficient power to detect the effect. We suspected a different reason, however, based on the types of associations between contexts and red herrings, and between test words and red herring words. Whereas the associations between contexts and red herrings were purely arbitrary and episodic (e.g., a photo of an airfield and the red herring word hut ), the associations between test words and red herrings were semantic and meaningful (e.g., COTTAGE- hut ). The stronger semantic associations, which existed even before participants enrolled in the experiment, were further strengthened in Experiment  1 by the paired-associates encoding task and the retrieval practice task. Thus, when the three test words on a RAT problem appeared, the presence of the strong word-word associates at test obscured the weaker effects of contextual stimuli, a phenomenon known as an outshining effect (e.g., McDaniel et al., 1989 ; Smith & Vela, 1986 , 2001 ). An alternative to outshining might be that because of the strong association of the paired-associates, the contexts were never even encoded. The strongly associated red herrings overshadowed the arbitrary contexts at encoding (Pavlov, 1927 , p.141). Although we did not test these two explanations per se, in Experiment  2 we removed the possibility of either outshining or overshadowing by having red herrings associated with contexts directly rather than pairing them with the RAT words as was done in Experiment  1 .

Although the main effect of context and the context X repetition interaction were not significant in Experiment  1 , the non-significant trend ( p = .084) suggests that greater effects of context manipulations may occur with more retrieval practice trials in a given context. This possibility is supported by the reasoning that more context-item practice strengthens not only the items themselves, but also the item-context associations, making memory of items more dependent upon the context. Therefore, in addition to mitigating potential outshining effects in Experiment  2 , we also tried to maximize the likelihood of finding context-dependent fixation effects by using two context-item retrieval practice trials for all items.

Experiment 2

In Experiment  1 , triads of paired-associates, made from each RAT test word paired with its red herring (e.g., COTTAGE-hut, SWISS-chocolate, CAKE-icing), had been studied in association with photo contexts (e.g., a photo of an airfield). In Experiment  2 , to avoid an outshining effect from powerful word cues, we instead paired the three red herrings for a subsequent problem (e.g., hut, chocolate, icing) with a photo context (e.g., an airfield). Participants were told that for each trial of a subsequent memory test, they would see a photograph, and they were to recall the three words that had been paired with the photo. Following two practice trials in which participants tried to recall the three words for each photo context (with post-trial corrective feedback), participants were given a test of RAT problems. A third of the RAT problems were displayed on the photo context that was paired with red herring words at encoding (primed-reinstated context), a third were shown superimposed over a new context (primed-new context), and a third did not correspond to any red herrings shown in the experiment (unprimed items). The red herring retrieval hypothesis predicted that the unprimed RAT problems would have the highest solution rate, the primed-new context problems would have the next highest solution rate, and RAT problems in the primed-reinstated context condition would have the lowest solution rate.

Furthermore, following an analysis of solution rates of RAT problems from Experiment  1 , 12 of the original set of 36 RAT items were excluded from Experiment  2 because their solution rates were too low to show significantly decreased performance in the fixation conditions. For Experiment  1 , we selected items with high solution rates from the Bowden and Jung-Beeman ( 2003 ) norms (above 33% in the 15 seconds per problem condition), because we expected our fixation manipulations to decrease solution rates. In Experiment  1 , twelve of the RAT items had mean solution rates below 10%, a base rate too low to observe effects of fixation. Therefore we eliminated those 12 items from the stimulus materials used in Experiment  2 . The remaining items in the Bowden and Jung-Beeman ( 2003 ) norm had baseline solution rates that were too low to observe fixation effects, therefore we used the reduced set of 24 items with high solution rates in Experiment  2 .

An a priori power analysis indicated a desired total sample size of 84 to detect a medium-sized (Cohen’s d = .5) effect with an alpha level of .25 and power of .95. Participants were undergraduate psychology students volunteering as participants to fulfill part of a course requirement. They could enroll for time slots via a computerized database. The sessions were conducted with 3–15 participants at a time. There was a total of 89 participants in Experiment  2 : 30 in CB-1, 31 in CB-2 and 28 in CB-3.

Test condition (primed-reinstated context, primed-new context and unprimed) was a within-subjects measure, and counterbalancing (CB-1, CB-2 and CB-3) was a between-subjects measure. There were 24 items distributed in each test condition (see Appendix ). In Experiment  2 , the set of items (i.e., 8 RAT problems with their accompanying red herrings) in the primed-reinstated context condition in CB-1 were in the primed-new context condition in CB-2, and the unprimed (baseline) condition in CB-3. The other two sets of 8 items were similarly counterbalanced among the three counterbalancing groups. The proportion of RAT problems solved was the dependent measure.

The procedure used in Experiment  2 was the same as described for Experiment  1 , with the following exceptions.

On the context encoding task in Experiment  2 , participants were instructed to memorize each set of 3 words appearing together on the screen (i.e., the 3 red herrings for a RAT problem) in association with the context photos.

For each trial of the retrieval practice task in Experiment  2 , participants were shown one of the encoded photo contexts as a cue, and they tried to recall the three words that they had encoded on the previous task. Participants wrote these responses on paper, with 10-sec per retrieval practice trial. After 10-sec, the correct responses were shown on the screen, participants either circled the responses that they got correct on that trial, or they wrote down the responses they could not remember. This self-correction procedure took another 10-sec per trial. All 16 of the encoded items were tested in this way twice. The method of Experiment  2 is shown on Fig.  3 .

Experiment  2 method

A repeated measures one-way ANOVA was computed, to test the effects of test position (unprimed, primed-reinstated context, primed-new context), using the proportion of RAT problems solved as a dependent variable. Footnote 2 There was a significant difference among the three conditions [ F (2,176) = 8.127, p < .001, p a r t i a l η 2 = .085] Post-hoc pairwise comparisons with a Bonferroni correction revealed, that compared to the unprimed condition ( M = .539, S D = .195), solutions for the RAT problems were significantly worse when the encoding contexts of red herrings at the test phase were reinstated ( M = .456, S D = .205) [ t (88) = 4.011, p < .001, d = .425]. We also found that compared to the new context condition ( M = .506, S D = .205) there was a significant decline in correct solutions if the encoding contexts of red herrings was reinstated at test [ t (88) = 2.585, p = .034, d = .274]. The difference between the unprimed and primed-new context conditions was not significant [ t (88) = 1.517, p = .399, d = .161] (Fig.  4 ).

Mean proportion of correct solutions for the RAT as a function of the three context conditions in Experiment  2 . The error bars represent 95% within-subjects CI

A paired-samples t-test showed that participants during the second retrieval practice trial ( M = .58, S D = .24) remembered the red herrings significantly better [ t (169) = 21.64, p < .001, d = 1.66] than during the first retrieval practice trial ( M = .22, S D = .15).

In contrast with the results of Experiment  1 , there was a clear context-dependent fixation effect observed in Experiment  2 . The RAT problems tested with the encoding contexts of corresponding red herrings (i.e., the primed-reinstated context items), relative to RAT problems tested with new contexts (i.e., the primed-new context items), were solved at a significantly lower rate. The primary difference between the procedures used in Experiments  1 and  2 was that in Experiment  1 , both RAT test words and photo contexts were practiced in association with red herrings, whereas in Experiment  2 , only photo contexts were practiced with red herrings. In Experiment  1 , the strong semantic associations between RAT test words and red herring words were made even stronger because they were practiced together. The presence of those strong verbal cues at test, regardless of the test context, caused an outshining effect (e.g., Smith, 1988 ) in Experiment  1 . Because the associations between test words and red herrings were practiced in Experiment  1 , but not Experiment  2 , the verbal cues were much stronger in Experiment  1 than in Experiment  2 . As a result, the cuing effects of photo contexts were not outshone by the stronger cuing effects of RAT test words in Experiment  2 , as they were in Experiment  1 . In addition, all items received one presentation trial and two retrieval practice trials before the critical RAT problems, based upon the suggestion in the results of Experiment  1 that multiple context-item repetitions may strengthen the context-red herring associations, making them more context-dependent.

In Experiment  2 , we included a baseline control condition (i.e., the unprimed condition) in which there were no corresponding red herrings that had been encoded and practiced before the RAT was given. The percentage of RAT problems solved in the primed-reinstated context condition, relative to the unprimed condition, was 8% lower, a fixation effect size ( d = .43) in the medium range (Cohen, 1977 ). In contrast, the 3% fixation effect in the primed-new context condition did not rise to significance, with a very small effect size ( d = .16). In addition to showing that a test manipulation, context reinstatement, affects the magnitude effect, the present findings suggest that trying to solve creative problems in new contexts may be a way to relieve fixation.

General discussion

Our results are consistent with the red herring retrieval hypothesis, the notion that red herrings retrieved from memory cause fixation effects, and furthermore, that factors that improve memory of red herrings also increase fixation effects. When the test words of RAT problems (e.g., COTTAGE - SWISS - CAKE), acting as stimulus members of paired associates, were practiced with red herrings (e.g., hut, chocolate, icing), that is, words conceptually related to test words but unrelated to solutions (e.g., cheese), performance on the RAT problems decreased, a fixation or blocking effect. Furthermore, when test word-red herring pairs were practiced more (Experiment  1 ), and when the encoding contexts of red herrings were reinstated (Experiment  2 ) the observed fixation effect was greater. The degree of practice or repetition should affect an item’s storage strength (Bjork & Bjork, 1992 ), or that item’s potential for being remembered, whereas providing context cues should affect the item’s retrieval strength, or the amount of storage potential that can be utilized. Our experiments show that manipulations of both the storage and retrieval strength of red herrings can affect the degree of fixation that is observed.

A not completely unexpected result was the lack of a context-dependent fixation effect in Experiment  1 . Previous research has shown that cued recall, using paired associates, is susceptible to the types of context manipulations that we used in the present experiments (e.g., Smith et al., 2014 ; Smith & Handy, 2014 , 2016 ). Smith et al., ( 2014 ), for example, observed context-dependent cued recall using Swahili-English word pairs, Smith and Handy ( 2014 ) found the effect using face-name pairs, and Smith and Handy ( 2016 ) found it using Tagalog-English word pairs. The word pairs used in Experiment  1 of the present study, however, differed from previously reported methods because the two words of our pairs were in the same language, semantically related to each other (e.g., COTTAGE-hut, SWISS-chocolate, CAKE-icing). The presence of strong semantic cues at test has been shown to weaken or eliminate episodic context reinstatement effects, consistent with the outshining hypothesis (Smith & Vela, 2001 ). Consistent with this reasoning, a clear effect of context reinstatement on fixation was seen in Experiment  2 when red herrings were associated with unrelated context cues, rather than with semantically related RAT word cues, at encoding. Another reason that context effects were significant in Experiment  2 , but not in Experiment  1 , might have been that each of the red herrings in Experiment  2 were presented and practiced twice, all in one single context, and the repeated association of contexts with red herrings might have made them more context-dependent, a notion consistent with the non-significant interaction of context X repetition observed in Experiment  1 . Although these explanations are logical, they are also speculative; the present experiments do not provide a critical test of them.

Our experiments broaden the linkage of research on creative thinking with memory research (e.g., Storm & Koppel, 2012 ; Koppel & Storm, 2014 ; Smith & Blankenship, 1989 , 1991 ; Storm & Angello, 2010 ; Storm, Angello, & Bjork, 2011 ; Angello, Storm, & Smith, 2015 ). The sensitivity of RAT problem solving, a test often used to assess creative ability (e.g., Benedek & Neubauer, 2013 ), to manipulations of the memorability of red herrings in the present two experiments shows that this test of creative problem solving has acted as an indirect measure of memory (Richardson-Klavehn & Bjork, 1988 ). In contrast to direct memory measures, indirect measures are those that do not refer participants to the items being remembered, but that are nonetheless influenced by memory of those items. Performance on tests of word fragment completion and anagrams, for example, reflect the manipulated memorability of solutions to those simple types of problems (e.g., Graf & Schacter, 1985 ; Kelley, Jacoby, & Hollingshead, 1989 ), as well as the manipulated memorability of red herrings (e.g., Landau & Leynes, 2004 ; Smith & Tindell, 1997 ). It is not clear whether the fixation effects observed in the present experiments were caused by automatic retrieval or deliberate recollection of red herrings. It is clear, however, that most participants knew that red herrings were not correct solutions; red herrings were given as intrusions on only 1.85% of all RAT problems in Experiment  1 , and on only 0.79% of the problems in Experiment  2 . The degree to which the present findings are due to conscious recollection of red herrings, versus how much is due to unconscious, automatic retrieval, should be a focus of future research.

Implicit memory blocking effects have been mitigated by weakening the retrieval strength of red herrings (or blockers) via memory inhibition procedures, including directed forgetting (Koppel & Storm, 2012 ) and suppression induced forgetting (Angello et al., 2015 ) of red herrings (e.g., ANALOGY) that were designed to block word fragment completion (e.g., A_L__GY). an indirect test of memory (see Smith & Tindell, 1997 ). Mitigating fixation in creative problem solving might be accomplished the same way, that is, by inhibiting the associations between problem stimuli and red herrings. This possibility is consistent with findings that show significant correlations between an individual’s RAT problem solving performance and the magnitude of that individual’s retrieval-induced forgetting effect; perhaps individuals who are good at inhibiting memories are also good at inhibiting inappropriate responses that may come to mind (and cause fixation) while trying to solve RAT problems. The present findings, that repetitions and context reinstatement of red herrings increased fixation in creative (RAT) problem solving, are consistent with the idea that better retrieval of red herrings increases their blocking (i.e., fixation) effectiveness.

Our experimental manipulations of participants’ memory of red herrings, which moderated blocks in creative problem solving, is consistent with a considerable body of research on creative cognition that has linked fixation and constraints that limit creative thinking with the inappropriate use of prior knowledge. The fixating effects of implicit assumptions has been explored and discussed at length by Gestalt psychologists, an acknowledgment that prior knowledge can cause fixation effects such as mental set (or Einstellung), (Luchins & Luchins, 1959 ; Duncker, 1945 ; Koffka, 1935 ; Köhler, 1925 ; Wertheimer, 1945 ) or functional fixity (e.g., Adamson & Taylor, 1954 ; Maier, 1931 ). In a similar vein, in constraint relaxation theory (e.g., Knoblich et al., 1999 ) knowledge about what does and does not serve as a satisfactory solution to a creative problem is described in terms of constraints, with such constraints having been learned and remembered from experiences with similar problems in one’s past. Likewise, the theory of structured imagination (Ward, 1994 ), which states that creative imagination is based on one’s conceptual knowledge, describes prematurely constrained idea development resulting from taking the “path of least resistance” after beginning with an overly constrained concept. And, using RAT problems whose incorrect solutions were baseball terms Wiley ( 1998 ) showed that prior knowledge about baseball could impede creative problem solving. What the present study adds to this body of research is the use of experimental paradigms that manipulate the memory of red herrings, or inappropriate solutions.

The red herring retrieval theory, which states that creative problem solving performance depends on the retrieval strength of red herrings, is closely related to Smith and Blankenship’s forgetting fixation theory of incubation effects. This theory of incubation states that a decrease in memory of fixating ideas is the cause of incubation effects, defined as resolution of initial blocks (or fixation) as a function of forgetting red herrings (blockers) during the incubation interval. Smith and Blankenship ( 1989 ), for example, showed that longer incubation intervals caused both poorer memory of blockers and better resolution of initially unsolved rebus problems, consistent with the forgetting fixation theory of incubation effects. Theories that link the passage of time with changes in one’s mental context, that is, contextual fluctuation theories (Estes, 1955 ; Bower, 1972 ; Glenberg, 1979 ; Howard & Kahana, 2002 ; Mensink & Raaijmakers, 1989 ), are consistent with the notion that contextual fluctuation, after initial fixation on a problem, rather than the passage of time per se, may be what mitigates fixation during an incubation period. The findings of context-dependent fixation in Experiment  2 of the present study indicate that initial fixation might be mitigated by a change of contexts, regardless of the passage of time. Such an explanation of “incubation” effects suggests a method of enhancing incubation effects may be to present initially unsolved problems in new contexts.

In conclusion, we have shown that creative problem solving is impeded by manipulations of factors that improve memory of red herrings for those problems. In Experiment  1 , repeated practice of associations between problems and red herrings caused greater fixation. In Experiment  2 , practice of associations between contexts and red herrings caused greater fixation for problems tested in those practiced contexts. The fact that retrieval of fixating ideas can be triggered by problems or by contexts shows that there can be multiple sources of fixation in creative problem solving, and indicates that efforts to reduce or overcome fixation might focus on memory cues provided by problems and/or by problem solving contexts.

The inclusion of counterbalancing in a mixed ANOVA as a between-subjects measure showed no differences between the four counterbalancing groups [ F (3, 129) < 1, p = .547, p a r t i a l η 2 = .016], therefore the between-subjects factor was removed from the calculation.

The inclusion of counterbalancing in a mixed ANOVA as a between-subjects measure showed no significant differences between the three counterbalancing groups [ F (2, 86) = 1.025, p = .363, p a r t i a l η 2 = .023], therefore the between-subjects factor was removed from the calculation.

Adamson, R. E., & Taylor, D. W. (1954). Functional fixedness as related to elapsed time and to set. Journal of Experimental Psychology , 47 (2), 122–126. ISSN: 0022-1015. https://doi.org/10.1037/h0057297

Article   PubMed   Google Scholar  

Angello, G., Storm, B. C., & Smith, S. M. (2015). Overcoming fixation with repeated memory suppression. Memory , 23 (3), 381–389. ISSN: 1464-0686 (Electronic) 0965-8211 (Linking). https://doi.org/10.1080/09658211.2014.889167 . https://www.ncbi.nlm.nih.gov/pubmed/24575886

PubMed   Google Scholar  

Benedek, M., & Neubauer, A. C. (2013). Revisiting Mednick’s model on creativity-related differences in associative hierarchies. Evidence for a common path to uncommon thought. Journal of Creative Behavior , 47 (4), 273–289. ISSN:0022-0175 (Print) 0022-0175 (Linking). https://doi.org/10.1002/jocb.35 . https://www.ncbi.nlm.nih.gov/pubmed/24532853 https://www.ncbi.nlm.nih.gov/pubmed/24532853

Bjork, R. A., & Bjork, E. L. (1992). A new theory of disuse and an old theory of stimulus fluctuation. In A. F. Healy, S. M. Kosslyn, & R. M. Shiffrin (Eds.) Essays in honor of William K. Estes, Vol. 1: From learning theory to connectionist theory; Vol. 2: From learning processes to cognitive processes . ISBN: 0-8058-1097-8 (Hardcover) 0-8058-0759-4 (Hardcover). Hillsdale: Lawrence Erlbaum Associates Inc.

Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems. Behavior Research Methods Instruments & Computers , 35 (4), 634–639. ISSN: 0743-3808. <GotoISI>://WOS:000187916000017. https://doi.org/10.3758/bf03195543

Article   Google Scholar  

Bower, G. H. (1972). Perceptual groups as coding units in immediate memory. Psychonomic Science , 27 (4), 217–219. ISSN: 0033-3131. https://doi.org/10.3758/bf03328942

Chrysikou, E. G., & Weisberg, R. W. (2005). Following the wrong footsteps: fixation effects of pictorial examples in a design problem-solving task. Journal of Experimental Psychology: Learning Memory and Cognition , 31 (5), 1134–1148. ISSN: 1939-1285. <GotoISI>://WOS:000233055100021. https://doi.org/10.1037/0278-7393.31.5.1134

Google Scholar  

Cohen, J. (1977) Statistical power analysis for the behavioral sciences, Rev. ed. Hillsdale: Lawrence Erlbaum Associates, Inc. ISBN: 0-12-179060-6. http://p2048-lib-ezproxy.tamu.edu.ezproxy.library.tamu.edu/login? http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=1987-98267-000&site=ehost-live

Duncker, K. (1945). On problem-solving. 58 , i-113. ISSN: 0096-9753. https://doi.org/10.1037/h0093599 .

Estes, W. K. (1955). Statistical theory of spontaneous recovery and regression. Psychological Review , 62 (3), 145–154. ISSN: 1939-1471 0033-295X. https://doi.org/10.1037/h0048509

Finke, R. A., Ward, T. B., & Smith, S. M. (1992) Creative cognition: Theory, research, and applications , (p. 239). Cambridge: The MIT Press. ISBN: 0-262-06150-3 (Hardcover).

Glenberg, A. M. (1979). Component-levels theory of the effects of spacing of repetitions on recall and recognition. Memory & Cognition , 7 (2), 95–112. ISSN: 0090-502X 1532-5946. https://doi.org/10.3758/bf03197590

Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: Learning, Memory, and Cognition , 11 (3), 501–518. ISSN: 1939-1285 0278-7393. https://doi.org/10.1037/0278-7393.11.3.501

Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology , 46 (3), 269–299. ISSN: 0022-2496. <GotoISI>://WOS:000176 738900002. https://doi.org/10.1006/jmps.2001.1388

Jacoby, L. L. (1996). Dissociating automatic and consciously controlled effects of study/test compatibility. Journal of Memory and Language , 35 (1), 32–52. ISSN: 0749-596X. https://doi.org/10.1006/jmla.1996.0002

Jacoby, L. L. (1998). Invariance in automatic influences of memory: Toward a user’s guide for the process-dissociation procedure. Journal of Experimental Psychology: Learning, Memory and Cognition , 24 (1), 3–26. ISSN: 0278-7393. https://doi.org/10.1037//0278-7393.24.1.3 . https://www.ncbi.nlm.nih.gov/pubmed/9438951

Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General , 110 (3), 306–340. ISSN: 0096-3445. https://doi.org/10.1037//0096-3445.110.3.306

Jacoby, L. L., Toth, J. P., & Yonelinas, A. P. (1993). Separating conscious and unconscious influences of memory: Measuring recollection. Journal of Experimental Psychology: General , 122 (2), 139–154. ISSN: 0096-3445. <GotoISI>://WOS:A199 3LD27100001. https://doi.org/10.1037//0096-3445.122.2.139

Jansson, D. G., & Smith, S. M. (1991). Design fixation. Design Studies , 12 (1), 3–11. ISSN: 0142-694X. https://doi.org/10.1016/0142-694x(91)90003-f

Kelley, C. M., Jacoby, L. L., & Hollingshead, A. (1989). Direct versus indirect tests of memory for source: Judgments of modality. Journal of Experimental Psychology: Learning, Memory, and Cognition , 15 (6), 1101–1108. ISSN: 0278-7393. https://doi.org/10.1037//0278-7393.15.6.1101

Kirsner, K., Milech, D., & Standen, P. (1983). Common and modality-specific processes in the mental lexicon. Memory & Cognition , 11 (6), 621–630. ISSN: 0090-502X. https://doi.org/10.3758/bf03198287

Knoblich, G. et al., (1999). Constraint relaxation and chunk decomposition in insight problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition , 25 (6), 1534–1555. ISSN: 0278-7393. https://doi.org/10.1037//0278-7393.25.6.1534

Koffka, K. (1935) Principles of gestalt psychology . London: Lund Humphries. https://doi.org/10.2307/2180493

Köhler, W. (1925). The mentality of apes. Trans. by Ella Winter. Oxford: Harcourt, Brace https://doi.org/10.1038/116351a0 .

Kohn, N. W., & Smith, S. M. (2009). Partly versus completely out of your mind: Effects of incubation and distraction on resolving fixation. Journal of Creative Behavior , 43 (2), 102–118. ISSN: 0022-0175. https://doi.org/10.1002/j.2162-6057.2009.tb01309.x

Kohn, N. W., & Smith, S. M. (2011). Collaborative fixation: Effects of others’ ideas on brainstorming. Applied Cognitive Psychology , 25 (3), 359–371. ISSN: 08884080. https://doi.org/10.1002/acp.1699 https://doi.org/10.1002/acp.1699

Koppel, R. H., & Storm, B. C. (2012). Unblocking memory through directed forgetting. Journal of Cognitive Psychology , 24 (8), 901–907. ISSN: 2044-5911 2044-592X. https://doi.org/10.1080/20445911.2012.716822

Koppel, R. H., & Storm, B. C. (2014). Escaping mental fixation: Incubation and inhibition in creative problem solving. Memory , 22 (4), 340–348. ISSN: 1464-0686 (Electronic) 0965-8211 (Linking). https://doi.org/10.1080/09658211.2013.789914 . https://www.ncbi.nlm.nih.gov/pubmed/23607286

Landau, J. D., & Leynes, P. A. (2004). Manipulations that disrupt generative processes decrease conformity to examples: Evidence from two paradigms. Memory , 12 (1), 90–103. ISSN: 0965-8211. https://doi.org/10.1080/09658210244000388 . https://www.ncbi.nlm.nih.gov/pubmed/15098623

Landau, J. D., & Leynes, P. A. (2006). Do explicit memory manipulations affect the memory blocking effect? The American Journal of Psychology , 119 (3), 463. ISSN: 0002-9556. https://doi.org/10.2307/20445353

Leynes, P. A., Brown, J., & Landau, J. D. (2011). Objective and subjective measures indicate that orthographically similar words produce a blocking experience. Memory , 19 (1), 17–35. ISSN: 0965-8211. https://doi.org/10.1080/09658211.2010.531025 . https://www.ncbi.nlm.nih.gov/pubmed/21240746 https://www.ncbi.nlm.nih.gov/pubmed/21240746

Logan, J. M., & Balota, D. A. (2003). Conscious and unconscious lexical retrieval blocking in younger and older adults. Psychology and Aging , 18 , 537–550. ISSN: 1939-1498. https://doi.org/10.1037/0882-7974.18.3.537

Luchins, A. S., & Luchins, E. H. (1959) Rigidity of behavior, a variational approach to the effect of Einstellung. University of Oregon monographs, studies in psychology , (p. xxv, 623). Eugene: University of Oregon Books. https://doi.org/10.2307/1419434 .

Lustig, C., & Hasher, L. (2001). Implicit memory is vulnerable to proactive interference. Psychological Science , 12 (5), 408–412. ISSN: 0956-7976. https://doi.org/10.1111/1467-9280.00375 . https://www.ncbi.nlm.nih.gov/pubmed/11554675

Maier, N. R. F. (1931). Reasoning in humans. II. The solution of a problem and its appearance in consciousness. Journal of Comparative Psychology , 12 (2), 181–194. ISSN: 0093-4127. https://doi.org/10.1037/h0071361

McDaniel, M. A. et al., (1989). Modulation of environmental reinstatement effects through encoding strategies. The American Journal of Psychology , 102 (4), 523. ISSN: 0002-9556. https://doi.org/10.2307/1423306

Mednick, S. (1962). The associative basis of the creative process. Psychological Review , 69 , 220–232. ISSN: 0033-295X. https://doi.org/10.1037/h0048850 . https://www.ncbi.nlm.nih.gov/pubmed/14472013

Mensink, G.-J. M., & Raaijmakers, J. G. W. (1989). A model for contextual fluctuation. Journal of Mathematical Psychology , 33 (2), 172–186. ISSN: 00222496. https://doi.org/10.1016/0022-2496(89)90029-1

Müller, G. E., & Pilzecker, A. (1900). Experimentelle Beiträge zur Lehre vom Gedächtnis. German. Zeitschrift für Psychologie. Ergänzungsband , 1 , 1–300.

Mulligan, N. W. (2011). Conceptual implicit memory and environmental context. Consciousness and Cognition , 20 (3), 737–744. ISSN: 10538100. https://doi.org/10.1016/j.concog.2010.11.008

Neill, W. T., & Valdes, L. A. (1992). Persistence of negative priming: Steady state or decay? Journal of Experimental Psychology: Learning, Memory, and Cognition , 18 (3), 565–576. ISSN: 0278-7393. https://doi.org/10.1037//0278-7393.18.3.565

Parker, A., Gellatly, A., & Waterman, M. (1999). The effect of environmental context manipulation on memory: Dissociation between perceptual and conceptual implicit tests. European Journal of Cognitive Psychology , 11 (4), 555–570. ISSN: 0954-1446. https://doi.org/10.1080/095414499382291

Pavlov, I. (1927) Conditioned reflexes . New York: Oxford University Press.

Purcell, A. T. et al., (1993). Fixation effects: Do they exist in design problem solving? Environment and Planning B: Planning and Design , 20 (20), 333–345. ISSN: 0265-8135. https://doi.org/10.1068/b200333

Richardson-Klavehn, A., & Bjork, R. A. (1988). Measures of memory. Annual Review of Psychology , 39 (1), 475–543. ISSN: 0066-4308 1545-2085. https://doi.org/10.1146/annurev.ps.39.020188.002355

Scarborough, D. L., Gerard, L., & Cortese, C. (1979). Accessing lexical memory: The transfer of word repetition effects across task and modality. Memory & Cognition , 7 (1), 3–12. ISSN: 0090 -502X. https://doi.org/10.3758/bf03196928

Shahabuddin, S. S., & Smith, S. M. (2016). Asymmetric reinstatement effects in recognition. Journal of General Psychology , 143 (4), 267–280. ISSN: 1940-0888 (Electronic) 0022-1309 (Linking). https://doi.org/10.1080/00221309.2016.1214100 . https://www.ncbi.nlm.nih.gov/pubmed/27649359 https://www.ncbi.nlm.nih.gov/pubmed/27649359

Sio, U. N., Kotovsky, K., & Cagan, J. (2015). Fixation or inspiration? A meta-analytic review of the role of examples on design processes. Design Studies , 39 , 70–99. ISSN: 0142-694X. https://doi.org/10.1016/j.destud.2015.04.004

Smith, S. M. (1979). Remembering in and out of context. Journal of Experimental Psychology , 5 (5), 460–471. ISSN: 0096-1515. https://doi.org/10.1037/0278-7393.5.5.460

Smith, S. M. (1988). Environmental context-dependent memory. In D. M. Thomson, & G. M. Davies (Eds.) Chap. 2 (pp. 13–34). New York: Wiley.

Smith, S. M. (1995a). Creative cognition: Demystifying creativity. In C. N. Hedley, P. Antonacci, & M. Rabinowitz (Eds.) The mind at work in the classroom: Literacy and thinking . Chap. 3 (pp. 31–46). Hillsdale: Erlbaum.

Smith, S. M. (1995b). Fixation, incubation, and insight in memory, problem solving, and creativity. In S. M. Smith, T. B. Ward, & R. A. Finke (Eds.) The creative cognition approach . ISBN: 0-262-19354-X (pp. 135–156). Cambridge: The MIT Press.

Smith, S. M. (2003). The constraining effects of initial ideas. In P. B. Paulus, & B. A. Nijstad (Eds.) Group creativity: Innovation through collaboration . ISBN: 0-19-514730-8 (Hardcover). (pp. 1531). New York: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195147308.003.0002 .

Smith, S. M. (2013). Effects of environmental context on human memory. In T. J. Perfect, & D. S. Lindsay (Eds.) The SAGE handbook of applied memory, SAGE, 2013 . ISBN: 1446296989 (pp. 162–182).

Smith, S. M., & Blankenship, S. E. (1989). Incubation effects. Bulletin of Psychonomic Society , 27 (4), 311–314. ISSN: 0090-5054. https://doi.org/10.3758/bf03334612

Smith, S. M., & Blankenship, S. E. (1991). Incubation and the persistence of fixation in problem solving. The American Journal of Psychology , 104 (1), 61–87. ISSN: 0002-9556. https://doi.org/10.2307/1422851 . https://www.ncbi.nlm.nih.gov/pubmed/2058758

Smith, S. M., & Handy, J. D. (2014). Effects of varied and constant environmental contexts on acquisition and retention. Journal of Experimental Psychology: Learning, Memory, and Cognition , 40 (6), 1582–1593. ISSN: 1939-1285. https://doi.org/10.1037/xlm0000019

Smith, S. M., & Handy, J. D. (2016). The crutch of context-dependency: Effects of contextual support and constancy on acquisition and retention. Memory , 24 (8), 1134–1141. ISSN: 0965- 8211. https://doi.org/10.1080/09658211.2015.1071852

Smith, S. M., Heath, F. R., & Vela, E. (1990). Environmental context-dependent homophone spelling. The American Journal of Psychology , 103 (2), 229–242. ISSN: 0002-9556. https://doi.org/10.2307/1423144

Smith, S. M., & Manzano, I. (2010). Video context-dependent recall. Behavior Research Methods , 42 (1), 292–301. ISSN: 1554- 351X. https://doi.org/10.3758/brm.42.1.292 . https://www.ncbi.nlm.nih.gov/pubmed/20160308 https://www.ncbi.nlm.nih.gov/pubmed/20160308

Smith, S. M., & Tindell, D. R. (1997). Memory blocks in word fragment completion caused by involuntary retrieval of orthographically related primes. Journal of Experimental Psychology: Learning, Memory, and Cognition , 23 (2), 355–370. ISSN: 0278-7393. https://doi.org/10.1037//0278-7393.23.2.355

Smith, S. M., & Vela, E. (1986). Outshining - the relative effectiveness of cues. Bulletin of the Psychonomic Society , 24 (5), 350.

Smith, S. M., & Vela, E. (2001). Environmental context-dependent memory: A review and meta-analysis. Psychonomic Bulletin & Review , 8 (2), 203–220. ISSN: 1069-9384. https://doi.org/10.3758/bf03196157

Smith, S. M., Ward, T. B., & Schumacher, J. S. (1993). Constraining effects of examples in a creative generation task. Memory & Cognition , 21 (6), 837–845. ISSN: 0090-502X. https://doi.org/10.3758/bf03202751

Smith, S. M. et al., (2014). Effects of similarity on environmental context cueing. Memory , 22 (5), 493–508. ISSN: 1464-0686 (Electronic) 0965-8211 (Linking). https://doi.org/10.1080/09658211.2013.800553 . https://www.ncbi.nlm.nih.gov/pubmed/23721293

Smith, S. M. et al., (2018). Context specificity of automatic influences of memory. Journal of Experimental Psychology: Learning, Memory and Cognition (in press).

Storm, B. C., & Angello, G. (2010). Overcoming fixation. Creative problem solving and retrieval-induced forgetting. Psychological Science , 21 (9), 1263–1265. ISSN: 0956-7976. https://doi.org/10.1177/0956797610379864 . https://www.ncbi.nlm.nih.gov/pubmed/20693427

Storm, B. C., Angello, G., & Bjork, E. L. (2011). Thinking can cause forgetting: Memory dynamics in creative problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition , 37 (5), 1287–1293. ISSN: 1939-1285. https://doi.org/10.1037/a0023921 . https://www.ncbi.nlm.nih.gov/pubmed/21707211

Storm, B. C., & Koppel, R. H. (2012). Testing the cue dependence of problem-solving-induced forgetting. The Journal of Problem Solving , 4 (2). ISSN: 1932-6246. https://doi.org/10.7771/1932-6246.1125

Vasconcelos, L. A. et al., (2017). To copy or not to copy: The influence of instructions in design fixation experiments. In J. S. Gero (Ed.) Design Computing and Cognition ’16 (pp. 359–375). Cham: Springer International Publishing . ISBN: 978-3-319-44989-0. https://doi.org/10.1007/978-3-319-44989-0_20

Vul, E., & Pashler, H. (2007). Incubation benefits only after people have been misdirected. Memory & Cognition , 35 (4), 701–710. ISSN: 0090-502X. https://doi.org/10.3758/bf03193308

Ward, T. B. (1994). Structured imagination: The role of category structure in exemplar generation. Cognitive Psychology , 27 (1), 1–40. ISSN: 00100285. https://doi.org/10.1037/e665402011-365

Weldon, M. S., & Bellinger, K. D. (1997). Collective memory: Collaborative and individual processes in remembering. Journal of Experimental Psychology: Learning, Memory, and Cognition , 23 , 1160–1175. ISSN: 0278-7393. https://doi.org/10.1037/0278-7393.23.5.1160

Wertheimer, M. (1945). Productive thinking . Oxford: Harper.

Wiley, J. (1998). Expertise as mental set: The effects of domain knowledge in creative problem solving. Memory & Cognition , 26 (4), 716–730. ISSN: 0090-502X. https://doi.org/10.3758/bf03211392

Wood, G., & Pennington, J. (1973). Encoding and retrieval from long-term storage. Journal of Experimental Psychology , 99 (2), 243–254. ISSN: 0022-1015. https://doi.org/10.1037/h0034636

Download references

Author information

Authors and affiliations.

Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843, USA

Zsolt Beda & Steven M. Smith

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Zsolt Beda .

Appendix: Remote associates test items and their red herrings

  • Items with an asterisk (*) were used in Experiment  2

Rights and permissions

Reprints and permissions

About this article

Beda, Z., Smith, S.M. Chasing red herrings: Memory of distractors causes fixation in creative problem solving. Mem Cogn 46 , 671–684 (2018). https://doi.org/10.3758/s13421-018-0799-3

Download citation

Published : 07 March 2018

Issue Date : July 2018

DOI : https://doi.org/10.3758/s13421-018-0799-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Remote Associates Test
  • Find a journal
  • Publish with us
  • Track your research

lls-logo-main

  • The Art of Effective Problem Solving: A Step-by-Step Guide

Problem Solving - A step by step guide - LearnLeanSigma

  • Learn Lean Sigma
  • Problem Solving

Whether we realise it or not, problem solving skills are an important part of our daily lives. From resolving a minor annoyance at home to tackling complex business challenges at work, our ability to solve problems has a significant impact on our success and happiness. However, not everyone is naturally gifted at problem-solving, and even those who are can always improve their skills. In this blog post, we will go over the art of effective problem-solving step by step.

You will learn how to define a problem, gather information, assess alternatives, and implement a solution, all while honing your critical thinking and creative problem-solving skills. Whether you’re a seasoned problem solver or just getting started, this guide will arm you with the knowledge and tools you need to face any challenge with confidence. So let’s get started!

Table of Contents

Problem solving methodologies.

Individuals and organisations can use a variety of problem-solving methodologies to address complex challenges. 8D and A3 problem solving techniques are two popular methodologies in the Lean Six Sigma framework.

Methodology of 8D (Eight Discipline) Problem Solving:

The 8D problem solving methodology is a systematic, team-based approach to problem solving. It is a method that guides a team through eight distinct steps to solve a problem in a systematic and comprehensive manner.

The 8D process consists of the following steps:

8D Problem Solving2 - Learnleansigma

  • Form a team: Assemble a group of people who have the necessary expertise to work on the problem.
  • Define the issue: Clearly identify and define the problem, including the root cause and the customer impact.
  • Create a temporary containment plan: Put in place a plan to lessen the impact of the problem until a permanent solution can be found.
  • Identify the root cause: To identify the underlying causes of the problem, use root cause analysis techniques such as Fishbone diagrams and Pareto charts.
  • Create and test long-term corrective actions: Create and test a long-term solution to eliminate the root cause of the problem.
  • Implement and validate the permanent solution: Implement and validate the permanent solution’s effectiveness.
  • Prevent recurrence: Put in place measures to keep the problem from recurring.
  • Recognize and reward the team: Recognize and reward the team for its efforts.

Download the 8D Problem Solving Template

A3 Problem Solving Method:

The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.

The A3 problem-solving procedure consists of the following steps:

  • Determine the issue: Define the issue clearly, including its impact on the customer.
  • Perform root cause analysis: Identify the underlying causes of the problem using root cause analysis techniques.
  • Create and implement a solution: Create and implement a solution that addresses the problem’s root cause.
  • Monitor and improve the solution: Keep an eye on the solution’s effectiveness and make any necessary changes.

Subsequently, in the Lean Six Sigma framework, the 8D and A3 problem solving methodologies are two popular approaches to problem solving. Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.

Step 1 – Define the Problem

The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause. To avoid this pitfall, it is critical to thoroughly understand the problem.

To begin, ask yourself some clarifying questions:

  • What exactly is the issue?
  • What are the problem’s symptoms or consequences?
  • Who or what is impacted by the issue?
  • When and where does the issue arise?

Answering these questions will assist you in determining the scope of the problem. However, simply describing the problem is not always sufficient; you must also identify the root cause. The root cause is the underlying cause of the problem and is usually the key to resolving it permanently.

Try asking “why” questions to find the root cause:

  • What causes the problem?
  • Why does it continue?
  • Why does it have the effects that it does?

By repeatedly asking “ why ,” you’ll eventually get to the bottom of the problem. This is an important step in the problem-solving process because it ensures that you’re dealing with the root cause rather than just the symptoms.

Once you have a firm grasp on the issue, it is time to divide it into smaller, more manageable chunks. This makes tackling the problem easier and reduces the risk of becoming overwhelmed. For example, if you’re attempting to solve a complex business problem, you might divide it into smaller components like market research, product development, and sales strategies.

To summarise step 1, defining the problem is an important first step in effective problem-solving. You will be able to identify the root cause and break it down into manageable parts if you take the time to thoroughly understand the problem. This will prepare you for the next step in the problem-solving process, which is gathering information and brainstorming ideas.

Step 2 – Gather Information and Brainstorm Ideas

Brainstorming - Learnleansigma

Gathering information and brainstorming ideas is the next step in effective problem solving. This entails researching the problem and relevant information, collaborating with others, and coming up with a variety of potential solutions. This increases your chances of finding the best solution to the problem.

Begin by researching the problem and relevant information. This could include reading articles, conducting surveys, or consulting with experts. The goal is to collect as much information as possible in order to better understand the problem and possible solutions.

Next, work with others to gather a variety of perspectives. Brainstorming with others can be an excellent way to come up with new and creative ideas. Encourage everyone to share their thoughts and ideas when working in a group, and make an effort to actively listen to what others have to say. Be open to new and unconventional ideas and resist the urge to dismiss them too quickly.

Finally, use brainstorming to generate a wide range of potential solutions. This is the place where you can let your imagination run wild. At this stage, don’t worry about the feasibility or practicality of the solutions; instead, focus on generating as many ideas as possible. Write down everything that comes to mind, no matter how ridiculous or unusual it may appear. This can be done individually or in groups.

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the next step in the problem-solving process, which we’ll go over in greater detail in the following section.

Step 3 – Evaluate Options and Choose the Best Solution

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the third step in effective problem solving, and it entails weighing the advantages and disadvantages of each solution, considering their feasibility and practicability, and selecting the solution that is most likely to solve the problem effectively.

To begin, weigh the advantages and disadvantages of each solution. This will assist you in determining the potential outcomes of each solution and deciding which is the best option. For example, a quick and easy solution may not be the most effective in the long run, whereas a more complex and time-consuming solution may be more effective in solving the problem in the long run.

Consider each solution’s feasibility and practicability. Consider the following:

  • Can the solution be implemented within the available resources, time, and budget?
  • What are the possible barriers to implementing the solution?
  • Is the solution feasible in today’s political, economic, and social environment?

You’ll be able to tell which solutions are likely to succeed and which aren’t by assessing their feasibility and practicability.

Finally, choose the solution that is most likely to effectively solve the problem. This solution should be based on the criteria you’ve established, such as the advantages and disadvantages of each solution, their feasibility and practicability, and your overall goals.

It is critical to remember that there is no one-size-fits-all solution to problems. What is effective for one person or situation may not be effective for another. This is why it is critical to consider a wide range of solutions and evaluate each one based on its ability to effectively solve the problem.

Step 4 – Implement and Monitor the Solution

Communication the missing peice from Lean Six Sigma - Learnleansigma

When you’ve decided on the best solution, it’s time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments.

To begin, implement the solution. This may entail delegating tasks, developing a strategy, and allocating resources. Ascertain that everyone involved understands their role and responsibilities in the solution’s implementation.

Next, keep an eye on the solution’s progress. This may entail scheduling regular check-ins, tracking metrics, and soliciting feedback from others. You will be able to identify any potential roadblocks and make any necessary adjustments in a timely manner if you monitor the progress of the solution.

Finally, make any necessary modifications to the solution. This could entail changing the solution, altering the plan of action, or delegating different tasks. Be willing to make changes if they will improve the solution or help it solve the problem more effectively.

It’s important to remember that problem solving is an iterative process, and there may be times when you need to start from scratch. This is especially true if the initial solution does not effectively solve the problem. In these situations, it’s critical to be adaptable and flexible and to keep trying new solutions until you find the one that works best.

To summarise, effective problem solving is a critical skill that can assist individuals and organisations in overcoming challenges and achieving their objectives. Effective problem solving consists of four key steps: defining the problem, generating potential solutions, evaluating alternatives and selecting the best solution, and implementing the solution.

You can increase your chances of success in problem solving by following these steps and considering factors such as the pros and cons of each solution, their feasibility and practicability, and making any necessary adjustments. Furthermore, keep in mind that problem solving is an iterative process, and there may be times when you need to go back to the beginning and restart. Maintain your adaptability and try new solutions until you find the one that works best for you.

  • Novick, L.R. and Bassok, M., 2005.  Problem Solving . Cambridge University Press.

Picture of Daniel Croft

Daniel Croft

Daniel Croft is a seasoned continuous improvement manager with a Black Belt in Lean Six Sigma. With over 10 years of real-world application experience across diverse sectors, Daniel has a passion for optimizing processes and fostering a culture of efficiency. He's not just a practitioner but also an avid learner, constantly seeking to expand his knowledge. Outside of his professional life, Daniel has a keen Investing, statistics and knowledge-sharing, which led him to create the website learnleansigma.com, a platform dedicated to Lean Six Sigma and process improvement insights.

Reverse Brainstorming - A fresh approach to problem solving - LearnLeanSigma

Reverse Brainstorming: A Fresh Approach to Problem Solving

Standard Work Instructions - Post Title

Standard Work Instructions

Free lean six sigma templates.

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

Practice Exams-Sidebar

5S Floor Marking Best Practices

In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…

How to Measure the ROI of Continuous Improvement Initiatives

When it comes to business, knowing the value you’re getting for your money is crucial,…

8D Problem-Solving: Common Mistakes to Avoid

In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…

The Evolution of 8D Problem-Solving: From Basics to Excellence

In a world where efficiency and effectiveness are more than just buzzwords, the need for…

8D: Tools and Techniques

Are you grappling with recurring problems in your organization and searching for a structured way…

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

the herring problem solving method

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

the herring problem solving method

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

the herring problem solving method

Provide details on what you need help with along with a budget and time limit. Questions are posted anonymously and can be made 100% private.

the herring problem solving method

Studypool matches you to the best tutor to help you with your question. Our tutors are highly qualified and vetted.

the herring problem solving method

Your matched tutor provides personalized help according to your question details. Payment is made only after you have completed your 1-on-1 session and are satisfied with your session.

the herring problem solving method

  • Homework Q&A
  • Become a Tutor

the herring problem solving method

All Subjects

Mathematics

Programming

Health & Medical

Engineering

Computer Science

Foreign Languages

the herring problem solving method

Access over 20 million homework & study documents

The herring problem solving method.

the herring problem solving method

Sign up to view the full document!

the herring problem solving method

24/7 Homework Help

Stuck on a homework question? Our verified tutors can answer all questions, from basic  math  to advanced rocket science !

the herring problem solving method

Similar Documents

the herring problem solving method

working on a homework question?

Studypool, Inc., Tutoring, Mountain View, CA

Studypool is powered by Microtutoring TM

Copyright © 2024. Studypool Inc.

Studypool is not sponsored or endorsed by any college or university.

Ongoing Conversations

the herring problem solving method

Access over 20 million homework documents through the notebank

the herring problem solving method

Get on-demand Q&A homework help from verified tutors

the herring problem solving method

Read 1000s of rich book guides covering popular titles

the herring problem solving method

Sign up with Google

the herring problem solving method

Sign up with Facebook

Already have an account? Login

Login with Google

Login with Facebook

Don't have an account? Sign Up

ORIGINAL RESEARCH article

The problem-solving method: efficacy for learning and motivation in the field of physical education.

\nGhaith Ezeddine

  • 1 High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
  • 2 Research Unit of the National Sports Observatory (ONS), Tunis, Tunisia
  • 3 Research Laboratory: Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax, Tunisia
  • 4 Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
  • 5 Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
  • 6 Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
  • 7 High Institute of Sport and Physical Education of Ksar Saîd, University Manouba, UMA, Manouba, Tunisia

Background: In pursuit of quality teaching and learning, teachers seek the best method to provide their students with a positive educational atmosphere and the most appropriate learning conditions.

Objectives: The purpose of this study is to compare the effects of the problem-solving method vs. the traditional method on motivation and learning during physical education courses.

Methods: Fifty-three students ( M age 15 ± 0.1 years), in their 1st year of the Tunisian secondary education system, voluntarily participated in this study, and randomly assigned to a control or experimental group. Participants in the control group were taught using the traditional methods, whereas participants in the experimental group were taught using the problem-solving method. Both groups took part in a 10-hour experiment over 5 weeks. To measure students' situational motivation, a questionnaire was used to evaluate intrinsic motivation, identified regulation, external regulation, and amotivation during the first (T0) and the last sessions (T2). Additionally, the degree of students' learning was determined via video analyses, recorded at T0, the fifth (T1), and T2.

Results: Motivational dimensions, including identified regulation and intrinsic motivation, were significantly greater (all p < 0.001) in the experimental vs. the control group. The students' motor engagement in learning situations, during which the learner, despite a degree of difficulty performs the motor activity with sufficient success, increased only in the experimental group ( p < 0.001). The waiting time in the experimental group decreased significantly at T1 and T2 vs. T0 (all p < 0.001), with lower values recorded in the experimental vs. the control group at the three-time points (all p < 0.001).

Conclusions: The problem-solving method is an efficient strategy for motor skills and performance enhancement, as well as motivation development during physical education courses.

1. Introduction

The education of children is a sensitive and poignant subject, where the wellbeing of the child in the school environment is a key issue ( Ergül and Kargin, 2014 ). For this, numerous research has sought to find solutions to the problems of the traditional method, which focuses on the teacher as an instructor, giver of knowledge, arbiter of truth, and ultimate evaluator of learning ( Ergül and Kargin, 2014 ; Cunningham and Sood, 2018 ). From this perspective, a teachers' job is to present students with a designated body of knowledge in a predetermined order ( Arvind and Kusum, 2017 ). For them, learners are seen as people with “knowledge gaps” that need to be filled with information. In this method, teaching is conceived as the act of transmitting knowledge from point A (responsible for the teacher) to point B (responsible for the students; Arvind and Kusum, 2017 ). According to Novak (2010) , in the traditional method, the teacher is the one who provokes the learning.

The traditional method focuses on lecture-based teaching as the center of instruction, emphasizing delivery of program and concept ( Johnson, 2010 ; Ilkiw et al., 2017 ; Dickinson et al., 2018 ). The student listens and takes notes, passively accepts and receives from the teacher undifferentiated and identical knowledge ( Bi et al., 2019 ). Course content and delivery are considered most important, and learners acquire knowledge through exercise and practice ( Johnson et al., 1998 ). In the traditional method, academic achievement is seen as the ability of students to demonstrate, replicate, or convey this designated body of knowledge to the teacher. It is based on a transmissive model, the teacher contenting themselves with exchanging and transmitting information to the learner. Here, only the “knowledge” and “teacher” poles of the pedagogical triangle are solicited. The teacher teaches the students, who play the role of the spectator. They receive information without participating in its creation ( Perrenoud, 2003 ). For this, researchers invented a new student-centered method with effects on improving students' graphic interpretation skills and conceptual understanding of kinematic motion represent an area of contemporary interest ( Tebabal and Kahssay, 2011 ). Indeed, in order to facilitate the process of knowledge transfer, teachers should use appropriate methods targeted to specific objectives of the school curricula.

For instance, it has been emphasized that the effectiveness of any educational process as a whole relies on the crucial role of using a well-designed pedagogical (teaching and/or learning) strategy ( Kolesnikova, 2016 ).

Alternate to a traditional method of teaching, Ergül and Kargin (2014 ), proposed the problem-solving method, which represents one of the most common student-centered learning strategies. Indeed, this method allows students to participate in the learning environment, giving them the responsibility for their own acquisition of knowledge, as well as the opportunity for the understanding and structuring of diverse information.

For Cunningham and Sood (2018) , the problem-solving method may be considered a fundamental tool for the acquisition of new knowledge, notably learning transfer. Moreover, the problem-solving method is purportedly efficient for the development of manual skills and experiential learning ( Ergül and Kargin, 2014 ), as well as the optimization of thinking ability. Additionally, the problem-solving method allows learners to participate in the learning environment, while giving them responsibility for their learning and making them understand and structure the information ( Pohan et al., 2020 ). In this context, Ali (2019) reported that, when faced with an obstacle, the student will have to invoke his/her knowledge and use his/her abilities to “break the deadlock.” He/she will therefore make the most of his/her potential, but also share and exchange with his/her colleagues ( Ali, 2019 ). Throughout the process, the student will learn new concepts and skills. The role of the teacher is paramount at the beginning of the activity, since activities will be created based on problematic situations according to the subject and the program. However, on the day of the activity, it does not have the main role, and the teacher will guide learners in difficulty and will allow them to manage themselves most of the time ( Ali, 2019 ).

The problem-solving method encourages group discussion and teamwork ( Fidan and Tuncel, 2019 ). Additionally, in this pedagogical approach, the role of the teacher is a facilitator of learning, and they take on a much more interactive and less rebarbative role ( Garrett, 2008 ).

For the teaching method to be effective, teaching should consist of an ongoing process of making desirable changes among learners using appropriate methods ( Ayeni, 2011 ; Norboev, 2021 ). To bring about positive changes in students, the methods used by teachers should be the best for the subject to be taught ( Adunola et al., 2012 ). Further, suggests that teaching methods work effectively, especially if they meet the needs of learners since each learner interprets and answers questions in a unique way. Improving problem-solving skills is a primary educational goal, as is the ability to use reasoning. To acquire this skill, students must solve problems to learn mathematics and problem-solving ( Hu, 2010 ); this encourages the students to actively participate and contribute to the activities suggested by the teacher. Without sufficient motivation, learning goals can no longer be optimally achieved, although learners may have exceptional abilities. The method of teaching employed by the teachers is decisive to achieve motivational consequences in physical education students ( Leo et al., 2022 ). Pérez-Jorge et al. (2021 ) posited that given we now live in a technological society in which children are used to receiving a large amount of stimuli, gaining and maintaining their attention and keeping them motivated at school becomes a challenge for teachers.

Fenouillet (2012) stated that academic motivation is linked to resources and methods that improve attention for school learning. Furthermore, Rolland (2009) and Bessa et al. (2021) reported a link between a learner's motivational dynamics and classroom activities. The models of learning situations, where the student is the main actor, directly refers to active teaching methods, and that there is a strong link between motivation and active teaching ( Rossa et al., 2021 ). In the same context, previous reports assert that the motivation of students in physical education is an important factor since the intra-individual motivation toward this discipline is recognized as a major determinant of physical activity for students ( Standage et al., 2012 ; Luo, 2019 ; Leo et al., 2022 ). Further, extensive research on the effectiveness of teaching methods shows that the quality of teaching often influences the performance of learners ( Norboev, 2021 ). Ayeni (2011) reported that education is a process that allows students to make changes desirable to achieve specific results. Thus, the consistency of teaching methods with student needs and learning influences student achievement. This has led several researchers to explore the impact of different teaching strategies, ranging from traditional methods to active learning techniques that can be used such as the problem-solving method ( Skinner, 1985 ; Darling-Hammond et al., 2020 ).

In the context of innovation, Blázquez (2016 ) emphasizes the importance of adopting active methods and implementing them as the main element promoting the development of skills, motivation and active participation. Pedagogical models are part of the active methods which, together with model-based practice, replace traditional teaching ( Hastie and Casey, 2014 ; Casey et al., 2021 ). Thus, many studies have identified pedagogical models as the most effective way to place students at the center of the teaching-learning process ( Metzler, 2017 ), making it possible to assess the impact of physical education on learning students ( Casey, 2014 ; Rivera-Pérez et al., 2020 ; Manninen and Campbell, 2021 ). Since each model is designed to focus on a specific program objective, each model has limitations when implemented in isolation ( Bunker and Thorpe, 1982 ; Rivera-Pérez et al., 2020 ). Therefore, focusing on developing students' social and emotional skills and capacities could help them avoid failure in physical education ( Ang and Penney, 2013 ). Thus, the current emergence of new pedagogical models goes with their hybridization with different methods, which is a wave of combinations proposed today as an innovative pedagogical strategy. The incorporation of this type of method in the current education system is becoming increasingly important because it gives students a greater role, participation, autonomy and self-regulation, and above all it improves their motivation ( Puigarnau et al., 2016 ). The teaching model of personal and social responsibility, for example, is closely related to the sports education model because both share certain approaches to responsibility ( Siedentop et al., 2011 ). One of the first studies to use these two models together was Rugby ( Gordon and Doyle, 2015 ), which found significant improvements in student behavior. Also, the recent study by Menendez and Fernandez-Rio (2017) on educational kickboxing.

Previous studies have indicated that hybridization can increase play, problem solving performance and motor skills ( Menendez and Fernandez-Rio, 2017 ; Ward et al., 2021 ) and generate positive psychosocial consequences, such as pleasure, intention to be physically active and responsibility ( Dyson and Grineski, 2001 ; Menendez and Fernandez-Rio, 2017 ).

But despite all these research results, the picture remains unclear, and it remains unknown which method is more effective in improving students' learning and motivation. Given the lack of published evidence on this topic, the aim of this study was to compare the effects of problem-solving vs. the traditional method on students' motivation and learning.

We hypothesized would that the problem-solving method would be more effective in improving students' motivation and learning better than the traditional method.

2. Materials and method

2.1. participants.

Fifty-three students, aged 15–16 ( M age 15 ± 0.1 years), in their 1st year of the Tunisian secondary education system, voluntarily participated in this study. All participants were randomly chosen. Repeating students, those who practice handball activity in civil/competitive/amateur clubs or in the high school sports association, and students who were absent, even for one session, were excluded. The first class consisted of 30 students (16 boys and 14 girls), who represented the experimental group and followed basic courses on a learning method by solving problems. The second class consisted of 23 students (10 boys and 13 girls), who represented the control group and followed the traditional teaching method. The total duration was spread over 5 weeks, or two sessions per week and each session lasted 50 min.

University research ethics board approval (CPPSUD: 0295/2021) was obtained before recruiting participants who were subsequently informed of the nature, objective, methodology, and constraints. Teacher, school director, parental/guardian, and child informed consent was obtained prior to participation in the study.

2.2. Procedure

Before the start of the experiment, the participants were familiarized with the equipment and the experimental protocol in order to ensure a good learning climate. For this and to mitigate the impact of the observer and the cameras on the students, the two researchers were involved prior to the data collection in a week of familiarization by making test recordings with the classes concerned.

An approach of a teaching cycle consisting of 10 sessions spread over 5 weeks, amounting to two sessions per week. Physical education classes were held in the morning from 8 a.m. to 9 a.m., with a single goal for each session that lasted 50 min. The cyclic programs were produced by the teacher responsible for carrying out the experiment with 18 years of service. To do this, the students had the same lessons with the same objectives, only pedagogy that differs: the experimental group worked using problem-solving pedagogy, while the control group was confronted with traditional pedagogy. The sessions took place in a handball field 40 m long and 20 m wide. Examples of training sessions using the problem-solving pedagogy and the traditional pedagogy are presented in Table 1 . In addition, a motivation questionnaire, the Situational Motivation Scale (SIMS; Guay et al., 2000 ), was administered to learners at the end of the session (i.e., in the beginning, and end of the cycle). Each student answered the questions alone and according to their own ideas. This questionnaire was taken in a classroom to prevent students from acting abnormally during the study. It lasted for a maximum of 10 min.

www.frontiersin.org

Table 1 . Example of activities for the different sessions.

Two diametrically opposed cameras were installed so to film all the movements and behaviors of each student and teacher during the three sessions [(i) test at the start of the cycle (T0), (ii) in the middle of the cycle (T1), and (iii) test at the end of the cycle (T2)]. These sessions had the same content and each consisted of four phases: the getting started, the warm-up, the work up (which consisted of three situations: first, the work was goes up the ball to two to score in the goal following a shot. Second, the same principle as the previous situation but in the presence of a defender. Finally, third, a match 7 ≠ 7), and the cooling down These recordings were analyzed using a Learning Time Analysis System grid (LTAS; Brunelle et al., 1988 ). This made it possible to measure individual learning by coding observable variables of the behavior of learners in a learning situation.

2.3. Data collection and analysis

2.3.1. the motivation questionnaire.

In this study, in order to measure the situational motivation of students, the situational motivation scale (SIMS; Guay et al., 2000 ), which used. This questionnaire assesses intrinsic motivation, identified regulation, external regulation and amotivation. SIMS has demonstrated good reliability and factor validity in the context of physical education in adolescents ( Lonsdale et al., 2011 ). The participants received exact instructions from the researchers in accordance with written instructions on how to conduct the data collection. Participants completed the SIMS anonymously at the start of a physical education class. All students had the opportunity to write down their answers without being observed and to ask questions if anything was unclear. To minimize the tendency to give socially desirable answers, they were asked to answer as honestly as possible, with the confidence that the teacher would not be able to read their answers and that their grades would not be affected by how they responded. The SIMS questionnaire was filled at T0 and T2. This scale is made up of 16 items divided into four dimensions: intrinsic motivation, identified regulation, external regulation and amotivation. Each item is rated on a 7-point Likert scale ranging from 1 (which is the weakest factor) “not at all” to 7 (which is the strongest factor) “exactly matches.”

In order to assess the internal consistency of the scales, a Cronbach alpha test was conducted ( Cronbach, 1951 ). The internal consistency of the scales was acceptable with reliability coefficients ranging from 0.719 to 0.87. The coefficient of reliability was 0.8.

In the present study, Cronbach's alphas were: intrinsic motivation = 0.790; regulation identified = 0.870; external regulation = 0.749; and amotivation = 0.719.

2.3.2. Camcorders

The audio-visual data collection was conducted using two Sony camcorders (Model; Handcam 4K) with a wireless microphone with a DJ transmitter-receiver (VHF 10HL F4 Micro HF) with a range of 80 m ( Maddeh et al., 2020 ). The collection took place over a period of 5 weeks, with three captures for each class (three sessions of 50 min for each at T0, T1, and T2). Two researchers were trained in the procedures and video capture techniques. The cameras were positioned diagonally, in order to film all the behavior of the students and teacher on the set.

2.3.3. The Learning Time Analysis System (LTAS)

To measure the degree of student learning, the analysis of videos recorded using the LTAS grid by Brunelle et al. (1988) was used, at T0, T1, and T2. This observation system with predetermined categories uses the technique of observation by small intervals (i.e., 6 s) and allows to measure individual learning by coding observable variables of their behaviors when they have been in a learning situation. This grid also permits the specification of the quantity and quality with which the participants engaged in the requested work and was graded, broadly, on two characteristics: the type of situation offered to the group by the teacher and the behavior of the target participant. The situation offered to the group was subdivided into three parts: preparatory situations; knowledge development situations, and motor development situations.

The observations and coding of behaviors are carried out “at intervals.” This technique is used extensively in research on behavior analysis. The coder observes the teaching situation and a particular student during each interval ( Brunelle et al., 1988 ). It then makes a decision concerning the characteristic of the observed behavior. The 6-s observation interval is followed by a coding interval of 6 s too. A cassette tape recorder is used to regulate the observation and recording intervals. It is recorded for this purpose with the indices “observe” and “code” at the start of each 6-s period. During each coding unit, the observer answered the following questions: What is the type of situation in which the class group finds itself? If the class group is in a learning situation proper, in what form of commitment does the observed student find himself? The abbreviations representing the various categories of behavior have been entered in the spaces which correspond to them. The coder was asked to enter a hyphen instead of the abbreviation when the same categories of behavior follow one another in consecutive intervals ( Brunelle et al., 1988 ).

During the preparatory period, the following behaviors were identified and analyzed:

- Deviant behavior: The student adopts a behavior incompatible with a listening attitude or with the smooth running of the preparatory situations.

- Waiting time: The student is waiting without listening or observing.

- Organized during: The student is involved in a complementary activity that does not represent a contribution to learning (e.g., regaining his place in a line, fetching a ball that has just left the field, replacing a piece of equipment).

During the motor development situations, the following behaviors were identified and analyzed:

- Motor engagement 1: The participant performs the motor activity with such easy that it can be inferred that their actions have little chance to engage in a learning process.

- Motor engagement 2: The participant-despite a certain degree of difficulty, performs the motor activity with sufficient success, which makes it possible to infer that they are in the process of learning.

- Motor engagement 3: The participant performs the motor activity with such difficulty that their efforts have very little chance of being part of a learning process.

2.4. Statistical analysis

Statistical tests were performed using statistical software 26.0 for windows (SPSS, Inc, Chicago, IL, USA). Data are presented in text and tables as means ± standard deviations and in figures as means and standard errors. Once the normal distribution of data was confirmed by the Shapiro-Wilk W -test, parametric tests were performed. Analysis of the results was performed using a mixed 2-way analysis of variance (ANOVA): Groups × Time with repeated measures.

For the learning parameters, the ANOVA took the following form: 2 Groups (Control Group vs. Experimental Group) × 3 Times (T0, T1, and T2).

For the dimensions of motivation, the ANOVA took the following form: 2 Groups (Control Group vs. Experimental Group) × 2 Time (T0 vs. T2).

In instances where the ANOVA showed a significant effect, a Bonferroni post-hoc test was applied in order to compare the experimental data in pairs, otherwise by an independent or paired Student's T -test. Effect sizes were calculated as partial eta-squared η p 2 to estimate the meaningfulness of significant findings, where η p 2 values of 0.01, 0.06, and 0.13 represent small, moderate, and large effect sizes, respectively ( Lakens, 2013 ). All observed differences were considered statistically significant for a probability threshold lower than p < 0.05.

Table 2 shows the results of learning variables during the preparatory and the development learning periods at T0, T1, and T2, in the control group and the experimental group.

www.frontiersin.org

Table 2 . Comparison of learning variables using two teaching methods in physical education.

The analysis of variance of two factors with repeated measures showed a significant effect of group, learning, and group learning interaction for the deviant behavior. The post-hoc test revealed significantly less frequent deviant behaviors in the experimental than in the control group at T0, T1, and T2 (all p < 0.001). Additionally, the deviant behavior decreased significantly at T1 and T2 compared to T0 for both groups (all p < 0.001).

For appropriate engagement, there were no significant group effect, a significant learning effect, and a significant group learning interaction effect. The post-hoc test revealed that compared to T0, Appropriate engagement recorded at T1 and T2 increased significantly ( p = 0.032; p = 0.031, respectively) in the experimental group, whilst it decreased significantly in the control group ( p < 0.001). Additionally, Appropriate engagement was higher in the experimental vs. control group at T1 and T2 (all p < 0.001).

For waiting time, a significant interaction in terms of group effect, learning, and group learning was found. The post-hoc test revealed that waiting time was higher at T1 and T2 vs. T0 (all p < 0.001) in the control group. In addition, waiting time in the experimental group decreased significantly at T1 and T2 vs. T0 (all p < 0.001), with higher values recorded at T2 vs. T1 ( p = 0.025). Additionally, lower values were recorded in the experimental group vs. the control group at the three-time points (all p < 0.001).

For Motor engagement 2, a significant group, learning, and group-learning interaction effect was noted. The post-hoc test revealed that Motor engagement 2 increased significantly in both groups at T1 ( p < 0.0001) and T2 ( p < 0.0001) vs. T0 ( p = 0.045), with significantly higher values recorded in the experimental group at T1 and T2.

Regarding Motor engagement 3, a non-significant group effect was reported. Contrariwise, a significant learning effect and group learning interaction was reported ( Table 1 ). The post-hoc test revealed a significant decrease in the control group and the experimental group at T1 ( p = 0.294) at T2 ( p = 0.294) vs. T0 ( p = 0.0543). In addition, a non-significant difference between the two groups was found.

A significant group and learning effect was noted for the organized during, and a non-significant group learning interaction. For organized during, the paired Student T -test showed a significant decrease in the control group and the experimental group (all p < 0.001). The independent Student T -test revealed a non-significant difference between groups at the three-time points.

Results of the motivational dimensions in the control group and the experimental group recorded at T0 and T2 are presented in Table 3 .

www.frontiersin.org

Table 3 . Comparison of the four motivational dimensions in two teaching methods in physical education.

For intrinsic motivation, a significant group effect and group learning interaction and also a non-significant learning effect was found. The post-hoc test indicated that the intrinsic motivation decreased significantly in the control group ( p = 0.029), whilst it increased in the experimental group ( p = 0.04). Additionally, the intrinsic motivation of the experimental group was higher at T0 ( p = 0.026) and T2 ( p < 0.001) compared to that of the control group.

For the identified regulation, a significant group effect, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test revealed that from T0 to T1, the identified motivation increased significantly only in the experimental group ( p = 0.022), while it remained unchanged in the control group. The independent Student's T -test revealed that the identified regulation recorded in the experimental group at T0 ( p = 0.012) and T2 ( p < 0.001) was higher compared to that of the control group.

The external regulation presents a significant group effect. In addition, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test showed that the external regulation decreased significantly in the experimental group ( p = 0.038), whereas it remained unchanged in the control group. Further, the independent Student's T -test revealed that the external regulation recorded at T2 was higher in the control group vs. the experimental group ( p < 0.001).

Relating to amotivation, results showed a significant group effect. Furthermore, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test showed that, from T0 to T2, amotivation decreased significantly in the experimental group ( p = 0.011) and did not change in the control group. The independent Student T -test revealed that amotivation recorded at T2 was lower in the experimental compared to the control group ( p = 0.002).

4. Discussion

The main purpose of this study was to compare the effects of the problem-solving vs. traditional method on motivation and learning during physical education courses. The results revealed that the problem-solving method is more effective than the traditional method in increasing students' motivation and improving their learning. Moreover, the results showed that mean wait times and deviant behaviors decreased using the problem-solving method. Interestingly, the average time spent on appropriate engagement increased using the problem-solving method compared to the traditional method. When using the traditional method, the average wait times increased and, as a result, the time spent on appropriate engagement decreased. Then, following the decrease in deviant behaviors and waiting times, an increase in the time spent warming up was evident (i.e., appropriate engagement). Indeed, there was an improvement in engagement time using the problem-solving method and a decrease using the traditional method. On the other hand, there was a decrease in motor engagement 3 in favor of motor engagement 2. Indeed, it has been shown that the problem-solving method has been used in the learning process and allows for its improvement ( Docktor et al., 2015 ). In addition, it could also produce better quality solutions and has higher scores on conceptual and problem-solving measures. It is also a good method for the learning process to enhance students' academic performance ( Docktor et al., 2015 ; Ali, 2019 ). In contrast, the traditional method limits the ability of teachers to reach and engage all students ( Cook and Artino, 2016 ). Furthermore, it produces passive learning with an understanding of basic knowledge which is characterized by its weakness ( Goldstein, 2016 ). Taken together, it appears that the problem-solving method promotes and improves learning more than the traditional method.

It should be acknowledged that other factors, such as motivation, could influence learning. In this context, our results showed that the method of problem-solving could improve the motivation of the learners. This motivation includes several variables that change depending on the situation, namely the intrinsic motivation that pushes the learner to engage in an activity for the interest and pleasure linked to the practice of the latter ( Komarraju et al., 2009 ; Guiffrida et al., 2013 ; Chedru, 2015 ). The student, therefore, likes to learn through problem-solving and neglects that of the traditional method. These results are concordant with others ( Deci and Ryan, 1985 ; Chedru, 2015 ; Ryan and Deci, 2020 ). Regarding the three forms of extrinsic motivation: first, extrinsic motivation by an identified regulation which manifests itself in a high degree of self-determination where the learner engages in the activity because it is important for him ( Deci and Ryan, 1985 ; Chedru, 2015 ). This explains the significant difference between the two groups. Then, the motivation by external regulation which is characterized by a low degree of self-determination such as the behavior of the learner is manipulated by external circumstances such as obtaining rewards or the removal of sanctions ( Deci and Ryan, 1985 ; Chedru, 2015 ). For this, the means of this variable decreased for the experimental group which is intrinsically motivated. He does not need any reward to work and is not afraid of punishment because he is self-confident. Third, amotivation is at the opposite end of the self-determination continuum. Unmotivated students are the most likely to feel negative emotions ( Ratelle et al., 2007 ; David, 2010 ), to have low self-esteem ( Deci and Ryan, 1995 ), and who attempts to abandon their studies ( Vallerand et al., 1997 ; Blanchard et al., 2005 ). So, more students are motivated by external regulation or demotivated, less interest they show and less effort they make, and more likely they are to fail ( Grolnick et al., 1991 ; Miserandino, 1996 ; Guay et al., 2000 ; Blanchard et al., 2005 ).

It is worth noting that there is a close link between motivation and learning ( Bessa et al., 2021 ; Rossa et al., 2021 ). Indeed, when the learner's motivation is high, so will his learning. However, all this depends on the method used ( Norboev, 2021 ). For example, the method of problem-solving increase motivation more than the traditional method, as evidenced by several researchers ( Parish and Treasure, 2003 ; Artino and Stephens, 2009 ; Kim and Frick, 2011 ; Lemos and Veríssimo, 2014 ).

Given the effectiveness of the problem-solving method in improving students' learning and motivation, it should be used during physical education teaching. This could be achieved through the organization of comprehensive training programs, seminars, and workshops for teachers so to master and subsequently be able to use the problem-solving method during physical education lessons.

Despite its novelty, the present study suffers from a few limitations that should be acknowledged. First, a future study, consisting of a group taught using the mixed method would preferable so to better elucidate the true impact of this teaching and learning method. Second, no gender and/or age group comparisons were performed. This issue should be addressed in future investigations. Finally, the number of participants is limited. This may be due to working in a secondary school where the number of students in a class is limited to 30 students. Additionally, the number of participants fell to 53 after excluding certain students (exempted, absent for a session, exercising in civil clubs or member of the school association). Therefore, to account for classes of finite size, a cluster-based trial would be beneficial in the future. Moreover, future studies investigating the effect of the active method in reducing some behaviors (e.g., disruptive behaviors) and for the improvement of pupils' attention are warranted.

5. Conclusion

There was an improvement in student learning in favor of the problem-solving method. Additionally, we found that the motivation of learners who were taught using the problem-solving method was better than that of learners who were educated by the traditional method.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Ethics statement

University Research Ethics Board approval was obtained before recruiting participants who were subsequently informed of the nature, objective, methodology, and constraints. Teacher, school director, parental/guardian, and child informed consent was obtained prior to participation in the study. In addition, exclusion criteria included; the practice of handball activity in civil/competitive/amateur clubs or in the high school sports association. Written informed consent to participate in this study was provided by the participants' legal guardian/next of kin.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Acknowledgments

Special thanks for all students and physical education teaching staff from the 15 November 1955 Secondary School, who generously shared their time, experience, and materials for the proposes of this study.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer MJ declared a shared affiliation, with no collaboration, with the authors GE, NS, LM, and KT to the handling editor at the time of review.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Adunola, O., Ed, B., and Adeniran, A. (2012). The Impact of Teachers' Teaching Methods on the Academic Performance of Primary School Pupils . Ogun: Ego Booster Books.

Google Scholar

Ali, S. S. (2019). Problem based learning: A student-centered approach. Engl. Lang. Teach . 12, 73. doi: 10.5539/elt.v12n5p73

CrossRef Full Text | Google Scholar

Ang, S. C., and Penney, D. (2013). Promoting social and emotional learning outcomes in physical education: Insights from a school-based research project in Singapore. Asia-Pac. J. Health Sport Phys. Educ . 4, 267–286. doi: 10.1080/18377122.2013.836768

Artino, A. R., and Stephens, J. M. (2009). Academic motivation and self-regulation: A comparative analysis of undergraduate and graduate students learning online. Internet. High. Educ. 12, 146–151. doi: 10.1016/j.iheduc.2009.02.001

Arvind, K., and Kusum, G. (2017). Teaching approaches, methods and strategy. Sch. Res. J. Interdiscip. Stud. 4, 6692–6697. doi: 10.21922/srjis.v4i36.10014

Ayeni, A. J. (2011). Teachers' professional development and quality assurance in Nigerian secondary schools. World J. Educ. 1, 143. doi: 10.5430/wje.v1n2p143

Bessa, C., Hastie, P., Rosado, A., and Mesquita, I. (2021). Sport education and traditional teaching: Influence on students' empowerment and self-confidence in high school physical education classes. Sustainability 13, 578. doi: 10.3390/su13020578

Bi, M., Zhao, Z., Yang, J., and Wang, Y. (2019). Comparison of case-based learning and traditional method in teaching postgraduate students of medical oncology. Med. Teach . 4, 1124–1128. doi: 10.1080/0142159X.2019.1617414

PubMed Abstract | CrossRef Full Text | Google Scholar

Blanchard, C., Pelletier, L., Otis, N., and Sharp, E. (2005). Role of self-determination and academic ability in predicting school absences and intention to drop out. J. Educ. Sci. 30, 105–123. doi: 10.7202/011772ar

Blázquez, D. (2016).Métodos de enseñanza en Educación Física. Enfoques innovadores para la enseñanza de competencias . Barcelona: Inde Publisher.

Brunelle, J., Drouin, D., Godbout, P., and Tousignant, M. (1988). Supervision of physical activity intervention. Montreal, Canada: G. Morin, Dl. Open J. Soc. Sci. 8.

Bunker, D., and Thorpe, R. (1982). A model for the teaching of games in secondary schools. Bull. Phys. Educ . 18, 5–8.

Casey, A. (2014). Models-based practice: Great white hope or white elephant? Phys. Educ. Sport Pedagog. 19, 18–34. doi: 10.1080/17408989.2012.726977

Casey, A., MacPhail, A., Larsson, H., and Quennerstedt, M. (2021). Between hope and happening: Problematizing the M and the P in models-based practice. Phys. Educ. Sport Pedagog. 26, 111–122. doi: 10.1080/17408989.2020.1789576

Chedru, M. (2015). Impact of motivation and learning styles on the academic performance of engineering students. J. Educ. Sci. 41, 457–482. doi: 10.7202/1035313ar

Cook, D. A., and Artino, A. R. (2016). Motivation to learn: An overview of contemporary theories. J. Med. Educ . 50, 997–1014. doi: 10.1111/medu.13074

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika. J. 16, 297–334. doi: 10.1007/BF02310555

Cunningham, J., and Sood, K. (2018). How effective are working memory training interventions at improving maths in schools: a study into the efficacy of working memory training in children aged 9 and 10 in a junior school?. Education 46, 174–187. doi: 10.1080/03004279.2016.1210192

Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., and Osher, D. (2020). Implications for educational practice of the science of learning and development. Appl. Dev. Sci. 24, 97–140. doi: 10.1080/10888691.2018.1537791

David, A. (2010). Examining the relationship of personality and burnout in college students: The role of academic motivation. E. M. E. Rev. 1, 90–104.

Deci, E., and Ryan, R. (1985). Intrinsic motivation and self-determination in human behavior. Perspect. Soc. Psychol . 2271, 7. doi: 10.1007/978-1-4899-2271-7

Deci, E. L., and Ryan, R. M. (1995). “Human autonomy,” in Efficacy, Agency, and Self-Esteem (Boston, MA: Springer).

Dickinson, B. L., Lackey, W., Sheakley, M., Miller, L., Jevert, S., and Shattuck, B. (2018). Involving a real patient in the design and implementation of case-based learning to engage learners. Adv. Physiol. Educ. 42, 118–122. doi: 10.1152/advan.00174.2017

Docktor, J. L., Strand, N. E., Mestre, J. P., and Ross, B. H. (2015). Conceptual problem solving in high school. Phys. Rev. ST Phys. Educ. Res. 11, 20106. doi: 10.1103/PhysRevSTPER.11.020106

Dyson, B., and Grineski, S. (2001). Using cooperative learning structures in physical education. J. Phys. Educ. Recreat. Dance. 72, 28–31. doi: 10.1080/07303084.2001.10605831

Ergül, N. R., and Kargin, E. K. (2014). The effect of project based learning on students' science success. Procedia. Soc. Behav. Sci. 136, 537–541. doi: 10.1016/j.sbspro.2014.05.371

Fenouillet, F. (2012). Les théories de la motivation . Psycho Sup : Dunod.

Fidan, M., and Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Comput. Educ .142, 103635. doi: 10.1016/j.compedu.2019.103635

Garrett, T. (2008). Student-centered and teacher-centered classroom management: A case study of three elementary teachers. J. Classr. Interact. 43, 34–47.

Goldstein, O. A. (2016). Project-based learning approach to teaching physics for pre-service elementary school teacher education students. Bevins S, éditeur. Cogent. Educ. 3, 1200833. doi: 10.1080/2331186X.2016.1200833

Gordon, B., and Doyle, S. (2015). Teaching personal and social responsibility and transfer of learning: Opportunities and challenges for teachers and coaches. J. Teach. Phys. Educ. 34, 152–161. doi: 10.1123/jtpe.2013-0184

Grolnick, W. S., Ryan, R. M., and Deci, E. L. (1991). Inner resources for school achievement: Motivational mediators of children's perceptions of their parents. J. Educ. Psychol . 83, 508–517. doi: 10.1037/0022-0663.83.4.508

Guay, F., Vallerand, R. J., and Blanchard, C. (2000). On the assessment of situational intrinsic and extrinsic motivation: The Situational Motivation Scale (SIMS). Motiv. Emot . 24, 175–213. doi: 10.1023/A:1005614228250

Guiffrida, D., Lynch, M., Wall, A., and Abel, D. (2013). Do reasons for attending college affect academic outcomes? A test of a motivational model from a self-determination theory perspective. J. Coll. Stud. Dev. 54, 121–139. doi: 10.1353/csd.2013.0019

Hastie, P. A., and Casey, A. (2014). Fidelity in models-based practice research in sport pedagogy: A guide for future investigations. J. Teach. Phys. Educ . 33, 422–431. doi: 10.1123/jtpe.2013-0141

Hu, W. (2010). Creative scientific problem finding and its developmental trend. Creat. Res. J. 22, 46–52. doi: 10.1080/10400410903579551

Ilkiw, J. E., Nelson, R. W., Watson, J. L., Conley, A. J., Raybould, H. E., Chigerwe, M., et al. (2017). Curricular revision and reform: The process, what was important, and lessons learned. J. Vet. Med. Educ . 44, 480–489. doi: 10.3138/jvme.0316-068R

Johnson, A. P. (2010). Making Connections in Elementary and Middle School Social Studies. 2nd Edn. London: SAGE.

Johnson, D. W., Johnson, R. T., and Smith, K. A. (1998). Active Learning: Cooperation in the College Classroom. 2nd Edn. Edina, MN: Interaction Press.

Kim, K. J., and Frick, T. (2011). Changes in student motivation during online learning. J. Educ. Comput. 44, 23. doi: 10.2190/EC.44.1.a

Kolesnikova, I. (2016). Combined teaching method: An experimental study. World J. Educ. 6, 51–59. doi: 10.5430/wje.v6n6p51

Komarraju, M., Karau, S. J., and Schmeck, R. R. (2009). Role of the Big Five personality traits in predicting college students' academic motivation and achievement. Learn. Individ. Differ. 19, 47–52. doi: 10.1016/j.lindif.2008.07.001

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t -tests and ANOVAs. Front. Psychol . 4, 863. doi: 10.3389/fpsyg.2013.00863

Lemos, M. S., and Veríssimo, L. (2014). The relationships between intrinsic motivation, extrinsic motivation, and achievement, along elementary school. Procedia. Soc. Behav. Sci . 112, 930–938. doi: 10.1016/j.sbspro.2014.01.1251

Leo, M. F., Mouratidis, A., Pulido, J. J., López-Gajardo, M. A., and Sánchez-Oliva, D. (2022). Perceived teachers' behavior and students' engagement in physical education: the mediating role of basic psychological needs and self-determined motivation. Phys. Educ. Sport Pedagogy. 27, 59–76. doi: 10.1080/17408989.2020.1850667

Lonsdale, C., Sabiston, C., Taylor, I., and Ntoumanis, N. (2011). Measuring student motivation for physical education: Examining the psychometric properties of the Perceived Locus of Causality Questionnaire and the Situational Motivation Scale. Psychol. Sport. Exerc . 12, 284–292. doi: 10.1016/j.psychsport.2010.11.003

Luo, Y. J. (2019). The influence of problem-based learning on learning effectiveness in students' of varying learning abilities within physical education. Innov. Educ. Teach. Int. 56, 3–13. doi: 10.1080/14703297.2017.1389288

Maddeh, T., Amamou, S., Desbiens, J., and françois Souissi, N. (2020). The management of disruptive behavior of secondary school students by Tunisian trainee teachers in physical education: Effects of a training program in the prevention and management of indiscipline. J. Educ. Fac . 4, 323–344. doi: 10.34056/aujef.674931

Manninen, M., and Campbell, S. (2021). The effect of the sport education model on basic needs, intrinsic motivation and prosocial attitudes: A systematic review and multilevel meta-Analysis. Eur. Phys. Educ. Rev . 28, 76–99. doi: 10.1177/1356336X211017938

Menendez, J. I., and Fernandez-Rio, J. (2017). Hybridising sport education and teaching for personal and social responsibility to include students with disabilities. Eur. J. Spec. Needs Educ. 32, 508–524 doi: 10.1080/08856257.2016.1267943

Metzler, M. (2017). Instructional Models in Physical Education . London: Routledge.

Miserandino, M. (1996). Children who do well in school: Individual differences in perceived competence and autonomy in above-average children. J. Educ. Psychol . 88, 203–214. doi: 10.1037/0022-0663.88.2.203

Norboev, N. N. (2021). Theoretical aspects of the influence of motivation on increasing the efficiency of physical education. Curr. Res. J. Pedagog . 2, 247–252. doi: 10.37547/pedagogics-crjp-02-10-44

Novak, D. J. (2010). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations. J. E-Learn. Knowl. Soc . 6, 21–30. doi: 10.20368/1971-8829/441

Parish, L. E., and Treasure, D. C. (2003). Physical activity and situational motivation in physical education: Influence of the motivational climate and perceived ability. Res. Q. Exerc. Sport. 74, 173. doi: 10.1080/02701367.2003.10609079

Pérez-Jorge, D., González-Dorta, D., Del Carmen Rodríguez-Jiménez, D., and Fariña-Hernández, L. (2021). Problem-solving teacher training, the effect of the ProyectaMates Programme in Tenerife. International Educ . 49, 777–7791. doi: 10.1080/03004279.2020.1786427

Perrenoud, P. (2003). Qu'est-ce qu'apprendre. Enfances Psy . 4, 9–17. doi: 10.3917/ep.024.0009

Pohan, A., Asmin, A., and Menanti, A. (2020). The effect of problem based learning and learning motivation of mathematical problem solving skills of class 5 students at SDN 0407 Mondang. BirLE . 3, 531–539. doi: 10.33258/birle.v3i1.850

Puigarnau, S., Camerino, O., Castañer, M., Prat, Q., and Anguera, M. T. (2016). El apoyo a la autonomía en practicantes de centros deportivos y de fitness para aumentar su motivación. Rev. Int. de Cienc. del deporte. 43, 48–64. doi: 10.5232/ricyde2016.04303

Ratelle, C. F., Guay, F., Vallerand, R. J., Larose, S., and Senécal, C. (2007). Autonomous, controlled, and amotivated types of academic motivation: A person-oriented analysis. J. Educ. Psychol. 99, 734–746. doi: 10.1037/0022-0663.99.4.734

Rivera-Pérez, S., Fernandez-Rio, J., and Gallego, D. I. (2020). Effects of an 8-week cooperative learning intervention on physical education students' task and self-approach goals, and Emotional Intelligence. Int. J. Environ. Res. Public Health . 18, 61. doi: 10.3390/ijerph18010061

Rolland, V. (2009). Motivation in the School Context . 5th Edn . Belguim: De Boeck Superior, 218.

Rossa, R., Maulidiah, R. H., and Aryni, Y. (2021). The effect of problem solving technique and motivation toward students' writing skills. J. Pena. Edukasi. 8, 43–54. doi: 10.54314/jpe.v8i1.654

Ryan, R., and Deci, E. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemp. Educ. Psychol . 61, 101860. doi: 10.1016/j.cedpsych.2020.101860

Siedentop, D., Hastie, P. A., and Van Der Mars, H. (2011). Complete Guide to Sport Education, 2nd Edn. Champaign, IL: Human Kinetics.

Skinner, B. F. (1985). Cognitive science and behaviourism. Br. J. Psychol. 76, 291–301. doi: 10.1111/j.2044-8295.1985.tb01953.x

Standage, M., Gillison, F. B., Ntoumanis, N., and Treasure, D. C. (2012). Predicting students' physical activity and health-related well-being: a prospective cross-domain investigation of motivation across school physical education and exercise settings. J. Sport. Exerc. Psychol . 34, 37–60. doi: 10.1123/jsep.34.1.37

Tebabal, A., and Kahssay, G. (2011). The effects of student-centered approach in improving students' graphical interpretation skills and conceptual understanding of kinematical motion. Lat. Am. J. Phys. Educ. 5, 9.

Vallerand, R. J., Fbrtier, M. S., and Guay, F. (1997). Self-determination and persistence in a real-life setting toward a motivational model of high school dropout. J. Pers. Soc. Psychol. 2, 1161–1176. doi: 10.1037/0022-3514.72.5.1161

Ward, P., Mitchell, M. F., van der Mars, H., and Lawson, H. A. (2021). Chapter 3: PK+12 School physical education: conditions, lessons learned, and future directions. J. Teach. Phys. Educ. 40, 363–371. doi: 10.1123/jtpe.2020-0241

Keywords: problem-solving method, traditional method, motivation, learning, students

Citation: Ezeddine G, Souissi N, Masmoudi L, Trabelsi K, Puce L, Clark CCT, Bragazzi NL and Mrayah M (2023) The problem-solving method: Efficacy for learning and motivation in the field of physical education. Front. Psychol. 13:1041252. doi: 10.3389/fpsyg.2022.1041252

Received: 10 September 2022; Accepted: 15 December 2022; Published: 25 January 2023.

Reviewed by:

Copyright © 2023 Ezeddine, Souissi, Masmoudi, Trabelsi, Puce, Clark, Bragazzi and Mrayah. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

The problem-solving method: Efficacy for learning and motivation in the field of physical education

Ghaith ezeddine.

1 High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia

Nafaa Souissi

2 Research Unit of the National Sports Observatory (ONS), Tunis, Tunisia

Liwa Masmoudi

3 Research Laboratory: Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax, Tunisia

Khaled Trabelsi

4 Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy

Cain C. T. Clark

5 Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom

Nicola Luigi Bragazzi

6 Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada

Maher Mrayah

7 High Institute of Sport and Physical Education of Ksar Saîd, University Manouba, UMA, Manouba, Tunisia

Associated Data

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

In pursuit of quality teaching and learning, teachers seek the best method to provide their students with a positive educational atmosphere and the most appropriate learning conditions.

The purpose of this study is to compare the effects of the problem-solving method vs. the traditional method on motivation and learning during physical education courses.

Fifty-three students ( M age 15 ± 0.1 years), in their 1st year of the Tunisian secondary education system, voluntarily participated in this study, and randomly assigned to a control or experimental group. Participants in the control group were taught using the traditional methods, whereas participants in the experimental group were taught using the problem-solving method. Both groups took part in a 10-hour experiment over 5 weeks. To measure students' situational motivation, a questionnaire was used to evaluate intrinsic motivation, identified regulation, external regulation, and amotivation during the first (T0) and the last sessions (T2). Additionally, the degree of students' learning was determined via video analyses, recorded at T0, the fifth (T1), and T2.

Motivational dimensions, including identified regulation and intrinsic motivation, were significantly greater (all p < 0.001) in the experimental vs. the control group. The students' motor engagement in learning situations, during which the learner, despite a degree of difficulty performs the motor activity with sufficient success, increased only in the experimental group ( p < 0.001). The waiting time in the experimental group decreased significantly at T1 and T2 vs. T0 (all p < 0.001), with lower values recorded in the experimental vs. the control group at the three-time points (all p < 0.001).

Conclusions

The problem-solving method is an efficient strategy for motor skills and performance enhancement, as well as motivation development during physical education courses.

1. Introduction

The education of children is a sensitive and poignant subject, where the wellbeing of the child in the school environment is a key issue (Ergül and Kargin, 2014 ). For this, numerous research has sought to find solutions to the problems of the traditional method, which focuses on the teacher as an instructor, giver of knowledge, arbiter of truth, and ultimate evaluator of learning (Ergül and Kargin, 2014 ; Cunningham and Sood, 2018 ). From this perspective, a teachers' job is to present students with a designated body of knowledge in a predetermined order (Arvind and Kusum, 2017 ). For them, learners are seen as people with “knowledge gaps” that need to be filled with information. In this method, teaching is conceived as the act of transmitting knowledge from point A (responsible for the teacher) to point B (responsible for the students; Arvind and Kusum, 2017 ). According to Novak ( 2010 ), in the traditional method, the teacher is the one who provokes the learning.

The traditional method focuses on lecture-based teaching as the center of instruction, emphasizing delivery of program and concept (Johnson, 2010 ; Ilkiw et al., 2017 ; Dickinson et al., 2018 ). The student listens and takes notes, passively accepts and receives from the teacher undifferentiated and identical knowledge (Bi et al., 2019 ). Course content and delivery are considered most important, and learners acquire knowledge through exercise and practice (Johnson et al., 1998 ). In the traditional method, academic achievement is seen as the ability of students to demonstrate, replicate, or convey this designated body of knowledge to the teacher. It is based on a transmissive model, the teacher contenting themselves with exchanging and transmitting information to the learner. Here, only the “knowledge” and “teacher” poles of the pedagogical triangle are solicited. The teacher teaches the students, who play the role of the spectator. They receive information without participating in its creation (Perrenoud, 2003 ). For this, researchers invented a new student-centered method with effects on improving students' graphic interpretation skills and conceptual understanding of kinematic motion represent an area of contemporary interest (Tebabal and Kahssay, 2011 ). Indeed, in order to facilitate the process of knowledge transfer, teachers should use appropriate methods targeted to specific objectives of the school curricula.

For instance, it has been emphasized that the effectiveness of any educational process as a whole relies on the crucial role of using a well-designed pedagogical (teaching and/or learning) strategy (Kolesnikova, 2016 ).

Alternate to a traditional method of teaching, Ergül and Kargin ( 2014 ), proposed the problem-solving method, which represents one of the most common student-centered learning strategies. Indeed, this method allows students to participate in the learning environment, giving them the responsibility for their own acquisition of knowledge, as well as the opportunity for the understanding and structuring of diverse information.

For Cunningham and Sood ( 2018 ), the problem-solving method may be considered a fundamental tool for the acquisition of new knowledge, notably learning transfer. Moreover, the problem-solving method is purportedly efficient for the development of manual skills and experiential learning (Ergül and Kargin, 2014 ), as well as the optimization of thinking ability. Additionally, the problem-solving method allows learners to participate in the learning environment, while giving them responsibility for their learning and making them understand and structure the information (Pohan et al., 2020 ). In this context, Ali ( 2019 ) reported that, when faced with an obstacle, the student will have to invoke his/her knowledge and use his/her abilities to “break the deadlock.” He/she will therefore make the most of his/her potential, but also share and exchange with his/her colleagues (Ali, 2019 ). Throughout the process, the student will learn new concepts and skills. The role of the teacher is paramount at the beginning of the activity, since activities will be created based on problematic situations according to the subject and the program. However, on the day of the activity, it does not have the main role, and the teacher will guide learners in difficulty and will allow them to manage themselves most of the time (Ali, 2019 ).

The problem-solving method encourages group discussion and teamwork (Fidan and Tuncel, 2019 ). Additionally, in this pedagogical approach, the role of the teacher is a facilitator of learning, and they take on a much more interactive and less rebarbative role (Garrett, 2008 ).

For the teaching method to be effective, teaching should consist of an ongoing process of making desirable changes among learners using appropriate methods (Ayeni, 2011 ; Norboev, 2021 ). To bring about positive changes in students, the methods used by teachers should be the best for the subject to be taught (Adunola et al., 2012 ). Further, suggests that teaching methods work effectively, especially if they meet the needs of learners since each learner interprets and answers questions in a unique way. Improving problem-solving skills is a primary educational goal, as is the ability to use reasoning. To acquire this skill, students must solve problems to learn mathematics and problem-solving (Hu, 2010 ); this encourages the students to actively participate and contribute to the activities suggested by the teacher. Without sufficient motivation, learning goals can no longer be optimally achieved, although learners may have exceptional abilities. The method of teaching employed by the teachers is decisive to achieve motivational consequences in physical education students (Leo et al., 2022 ). Pérez-Jorge et al. ( 2021 ) posited that given we now live in a technological society in which children are used to receiving a large amount of stimuli, gaining and maintaining their attention and keeping them motivated at school becomes a challenge for teachers.

Fenouillet ( 2012 ) stated that academic motivation is linked to resources and methods that improve attention for school learning. Furthermore, Rolland ( 2009 ) and Bessa et al. ( 2021 ) reported a link between a learner's motivational dynamics and classroom activities. The models of learning situations, where the student is the main actor, directly refers to active teaching methods, and that there is a strong link between motivation and active teaching (Rossa et al., 2021 ). In the same context, previous reports assert that the motivation of students in physical education is an important factor since the intra-individual motivation toward this discipline is recognized as a major determinant of physical activity for students (Standage et al., 2012 ; Luo, 2019 ; Leo et al., 2022 ). Further, extensive research on the effectiveness of teaching methods shows that the quality of teaching often influences the performance of learners (Norboev, 2021 ). Ayeni ( 2011 ) reported that education is a process that allows students to make changes desirable to achieve specific results. Thus, the consistency of teaching methods with student needs and learning influences student achievement. This has led several researchers to explore the impact of different teaching strategies, ranging from traditional methods to active learning techniques that can be used such as the problem-solving method (Skinner, 1985 ; Darling-Hammond et al., 2020 ).

In the context of innovation, Blázquez ( 2016 ) emphasizes the importance of adopting active methods and implementing them as the main element promoting the development of skills, motivation and active participation. Pedagogical models are part of the active methods which, together with model-based practice, replace traditional teaching (Hastie and Casey, 2014 ; Casey et al., 2021 ). Thus, many studies have identified pedagogical models as the most effective way to place students at the center of the teaching-learning process (Metzler, 2017 ), making it possible to assess the impact of physical education on learning students (Casey, 2014 ; Rivera-Pérez et al., 2020 ; Manninen and Campbell, 2021 ). Since each model is designed to focus on a specific program objective, each model has limitations when implemented in isolation (Bunker and Thorpe, 1982 ; Rivera-Pérez et al., 2020 ). Therefore, focusing on developing students' social and emotional skills and capacities could help them avoid failure in physical education (Ang and Penney, 2013 ). Thus, the current emergence of new pedagogical models goes with their hybridization with different methods, which is a wave of combinations proposed today as an innovative pedagogical strategy. The incorporation of this type of method in the current education system is becoming increasingly important because it gives students a greater role, participation, autonomy and self-regulation, and above all it improves their motivation (Puigarnau et al., 2016 ). The teaching model of personal and social responsibility, for example, is closely related to the sports education model because both share certain approaches to responsibility (Siedentop et al., 2011 ). One of the first studies to use these two models together was Rugby (Gordon and Doyle, 2015 ), which found significant improvements in student behavior. Also, the recent study by Menendez and Fernandez-Rio ( 2017 ) on educational kickboxing.

Previous studies have indicated that hybridization can increase play, problem solving performance and motor skills (Menendez and Fernandez-Rio, 2017 ; Ward et al., 2021 ) and generate positive psychosocial consequences, such as pleasure, intention to be physically active and responsibility (Dyson and Grineski, 2001 ; Menendez and Fernandez-Rio, 2017 ).

But despite all these research results, the picture remains unclear, and it remains unknown which method is more effective in improving students' learning and motivation. Given the lack of published evidence on this topic, the aim of this study was to compare the effects of problem-solving vs. the traditional method on students' motivation and learning.

We hypothesized would that the problem-solving method would be more effective in improving students' motivation and learning better than the traditional method.

2. Materials and method

2.1. participants.

Fifty-three students, aged 15–16 ( M age 15 ± 0.1 years), in their 1st year of the Tunisian secondary education system, voluntarily participated in this study. All participants were randomly chosen. Repeating students, those who practice handball activity in civil/competitive/amateur clubs or in the high school sports association, and students who were absent, even for one session, were excluded. The first class consisted of 30 students (16 boys and 14 girls), who represented the experimental group and followed basic courses on a learning method by solving problems. The second class consisted of 23 students (10 boys and 13 girls), who represented the control group and followed the traditional teaching method. The total duration was spread over 5 weeks, or two sessions per week and each session lasted 50 min.

University research ethics board approval (CPPSUD: 0295/2021) was obtained before recruiting participants who were subsequently informed of the nature, objective, methodology, and constraints. Teacher, school director, parental/guardian, and child informed consent was obtained prior to participation in the study.

2.2. Procedure

Before the start of the experiment, the participants were familiarized with the equipment and the experimental protocol in order to ensure a good learning climate. For this and to mitigate the impact of the observer and the cameras on the students, the two researchers were involved prior to the data collection in a week of familiarization by making test recordings with the classes concerned.

An approach of a teaching cycle consisting of 10 sessions spread over 5 weeks, amounting to two sessions per week. Physical education classes were held in the morning from 8 a.m. to 9 a.m., with a single goal for each session that lasted 50 min. The cyclic programs were produced by the teacher responsible for carrying out the experiment with 18 years of service. To do this, the students had the same lessons with the same objectives, only pedagogy that differs: the experimental group worked using problem-solving pedagogy, while the control group was confronted with traditional pedagogy. The sessions took place in a handball field 40 m long and 20 m wide. Examples of training sessions using the problem-solving pedagogy and the traditional pedagogy are presented in Table 1 . In addition, a motivation questionnaire, the Situational Motivation Scale (SIMS; Guay et al., 2000 ), was administered to learners at the end of the session (i.e., in the beginning, and end of the cycle). Each student answered the questions alone and according to their own ideas. This questionnaire was taken in a classroom to prevent students from acting abnormally during the study. It lasted for a maximum of 10 min.

Example of activities for the different sessions.

Two diametrically opposed cameras were installed so to film all the movements and behaviors of each student and teacher during the three sessions [(i) test at the start of the cycle (T0), (ii) in the middle of the cycle (T1), and (iii) test at the end of the cycle (T2)]. These sessions had the same content and each consisted of four phases: the getting started, the warm-up, the work up (which consisted of three situations: first, the work was goes up the ball to two to score in the goal following a shot. Second, the same principle as the previous situation but in the presence of a defender. Finally, third, a match 7 ≠ 7), and the cooling down These recordings were analyzed using a Learning Time Analysis System grid (LTAS; Brunelle et al., 1988 ). This made it possible to measure individual learning by coding observable variables of the behavior of learners in a learning situation.

2.3. Data collection and analysis

2.3.1. the motivation questionnaire.

In this study, in order to measure the situational motivation of students, the situational motivation scale (SIMS; Guay et al., 2000 ), which used. This questionnaire assesses intrinsic motivation, identified regulation, external regulation and amotivation. SIMS has demonstrated good reliability and factor validity in the context of physical education in adolescents (Lonsdale et al., 2011 ). The participants received exact instructions from the researchers in accordance with written instructions on how to conduct the data collection. Participants completed the SIMS anonymously at the start of a physical education class. All students had the opportunity to write down their answers without being observed and to ask questions if anything was unclear. To minimize the tendency to give socially desirable answers, they were asked to answer as honestly as possible, with the confidence that the teacher would not be able to read their answers and that their grades would not be affected by how they responded. The SIMS questionnaire was filled at T0 and T2. This scale is made up of 16 items divided into four dimensions: intrinsic motivation, identified regulation, external regulation and amotivation. Each item is rated on a 7-point Likert scale ranging from 1 (which is the weakest factor) “not at all” to 7 (which is the strongest factor) “exactly matches.”

  • In order to assess the internal consistency of the scales, a Cronbach alpha test was conducted (Cronbach, 1951 ). The internal consistency of the scales was acceptable with reliability coefficients ranging from 0.719 to 0.87. The coefficient of reliability was 0.8.
  • In the present study, Cronbach's alphas were: intrinsic motivation = 0.790; regulation identified = 0.870; external regulation = 0.749; and amotivation = 0.719.

2.3.2. Camcorders

The audio-visual data collection was conducted using two Sony camcorders (Model; Handcam 4K) with a wireless microphone with a DJ transmitter-receiver (VHF 10HL F4 Micro HF) with a range of 80 m (Maddeh et al., 2020 ). The collection took place over a period of 5 weeks, with three captures for each class (three sessions of 50 min for each at T0, T1, and T2). Two researchers were trained in the procedures and video capture techniques. The cameras were positioned diagonally, in order to film all the behavior of the students and teacher on the set.

2.3.3. The Learning Time Analysis System (LTAS)

To measure the degree of student learning, the analysis of videos recorded using the LTAS grid by Brunelle et al. ( 1988 ) was used, at T0, T1, and T2. This observation system with predetermined categories uses the technique of observation by small intervals (i.e., 6 s) and allows to measure individual learning by coding observable variables of their behaviors when they have been in a learning situation. This grid also permits the specification of the quantity and quality with which the participants engaged in the requested work and was graded, broadly, on two characteristics: the type of situation offered to the group by the teacher and the behavior of the target participant. The situation offered to the group was subdivided into three parts: preparatory situations; knowledge development situations, and motor development situations.

The observations and coding of behaviors are carried out “at intervals.” This technique is used extensively in research on behavior analysis. The coder observes the teaching situation and a particular student during each interval (Brunelle et al., 1988 ). It then makes a decision concerning the characteristic of the observed behavior. The 6-s observation interval is followed by a coding interval of 6 s too. A cassette tape recorder is used to regulate the observation and recording intervals. It is recorded for this purpose with the indices “observe” and “code” at the start of each 6-s period. During each coding unit, the observer answered the following questions: What is the type of situation in which the class group finds itself? If the class group is in a learning situation proper, in what form of commitment does the observed student find himself? The abbreviations representing the various categories of behavior have been entered in the spaces which correspond to them. The coder was asked to enter a hyphen instead of the abbreviation when the same categories of behavior follow one another in consecutive intervals (Brunelle et al., 1988 ).

During the preparatory period, the following behaviors were identified and analyzed:

  • - Deviant behavior: The student adopts a behavior incompatible with a listening attitude or with the smooth running of the preparatory situations.
  • - Waiting time: The student is waiting without listening or observing.
  • - Organized during: The student is involved in a complementary activity that does not represent a contribution to learning (e.g., regaining his place in a line, fetching a ball that has just left the field, replacing a piece of equipment).

During the motor development situations, the following behaviors were identified and analyzed:

  • - Motor engagement 1: The participant performs the motor activity with such easy that it can be inferred that their actions have little chance to engage in a learning process.
  • - Motor engagement 2: The participant-despite a certain degree of difficulty, performs the motor activity with sufficient success, which makes it possible to infer that they are in the process of learning.
  • - Motor engagement 3: The participant performs the motor activity with such difficulty that their efforts have very little chance of being part of a learning process.

2.4. Statistical analysis

Statistical tests were performed using statistical software 26.0 for windows (SPSS, Inc, Chicago, IL, USA). Data are presented in text and tables as means ± standard deviations and in figures as means and standard errors. Once the normal distribution of data was confirmed by the Shapiro-Wilk W -test, parametric tests were performed. Analysis of the results was performed using a mixed 2-way analysis of variance (ANOVA): Groups × Time with repeated measures.

  • For the learning parameters, the ANOVA took the following form: 2 Groups (Control Group vs. Experimental Group) × 3 Times (T0, T1, and T2).
  • For the dimensions of motivation, the ANOVA took the following form: 2 Groups (Control Group vs. Experimental Group) × 2 Time (T0 vs. T2).

In instances where the ANOVA showed a significant effect, a Bonferroni post-hoc test was applied in order to compare the experimental data in pairs, otherwise by an independent or paired Student's T -test. Effect sizes were calculated as partial eta-squared η p 2 to estimate the meaningfulness of significant findings, where η p 2 values of 0.01, 0.06, and 0.13 represent small, moderate, and large effect sizes, respectively (Lakens, 2013 ). All observed differences were considered statistically significant for a probability threshold lower than p < 0.05.

Table 2 shows the results of learning variables during the preparatory and the development learning periods at T0, T1, and T2, in the control group and the experimental group.

Comparison of learning variables using two teaching methods in physical education.

* Significantly different from control group at p <0.05.

# Significantly different from T0 at p <0.05.

$ Significantly different from T1 at p <0.05.

For motor engagement 1 (ME1), the time devoted to this variable is equal zero for the three measurement times (T0, T1, and T2).

The analysis of variance of two factors with repeated measures showed a significant effect of group, learning, and group learning interaction for the deviant behavior. The post-hoc test revealed significantly less frequent deviant behaviors in the experimental than in the control group at T0, T1, and T2 (all p < 0.001). Additionally, the deviant behavior decreased significantly at T1 and T2 compared to T0 for both groups (all p < 0.001).

For appropriate engagement, there were no significant group effect, a significant learning effect, and a significant group learning interaction effect. The post-hoc test revealed that compared to T0, Appropriate engagement recorded at T1 and T2 increased significantly ( p = 0.032; p = 0.031, respectively) in the experimental group, whilst it decreased significantly in the control group ( p < 0.001). Additionally, Appropriate engagement was higher in the experimental vs. control group at T1 and T2 (all p < 0.001).

For waiting time, a significant interaction in terms of group effect, learning, and group learning was found. The post-hoc test revealed that waiting time was higher at T1 and T2 vs. T0 (all p < 0.001) in the control group. In addition, waiting time in the experimental group decreased significantly at T1 and T2 vs. T0 (all p < 0.001), with higher values recorded at T2 vs. T1 ( p = 0.025). Additionally, lower values were recorded in the experimental group vs. the control group at the three-time points (all p < 0.001).

For Motor engagement 2, a significant group, learning, and group-learning interaction effect was noted. The post-hoc test revealed that Motor engagement 2 increased significantly in both groups at T1 ( p < 0.0001) and T2 ( p < 0.0001) vs. T0 ( p = 0.045), with significantly higher values recorded in the experimental group at T1 and T2.

Regarding Motor engagement 3, a non-significant group effect was reported. Contrariwise, a significant learning effect and group learning interaction was reported ( Table 1 ). The post-hoc test revealed a significant decrease in the control group and the experimental group at T1 ( p = 0.294) at T2 ( p = 0.294) vs. T0 ( p = 0.0543). In addition, a non-significant difference between the two groups was found.

A significant group and learning effect was noted for the organized during, and a non-significant group learning interaction. For organized during, the paired Student T -test showed a significant decrease in the control group and the experimental group (all p < 0.001). The independent Student T -test revealed a non-significant difference between groups at the three-time points.

Results of the motivational dimensions in the control group and the experimental group recorded at T0 and T2 are presented in Table 3 .

Comparison of the four motivational dimensions in two teaching methods in physical education.

For intrinsic motivation, a significant group effect and group learning interaction and also a non-significant learning effect was found. The post-hoc test indicated that the intrinsic motivation decreased significantly in the control group ( p = 0.029), whilst it increased in the experimental group ( p = 0.04). Additionally, the intrinsic motivation of the experimental group was higher at T0 ( p = 0.026) and T2 ( p < 0.001) compared to that of the control group.

For the identified regulation, a significant group effect, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test revealed that from T0 to T1, the identified motivation increased significantly only in the experimental group ( p = 0.022), while it remained unchanged in the control group. The independent Student's T -test revealed that the identified regulation recorded in the experimental group at T0 ( p = 0.012) and T2 ( p < 0.001) was higher compared to that of the control group.

The external regulation presents a significant group effect. In addition, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test showed that the external regulation decreased significantly in the experimental group ( p = 0.038), whereas it remained unchanged in the control group. Further, the independent Student's T -test revealed that the external regulation recorded at T2 was higher in the control group vs. the experimental group ( p < 0.001).

Relating to amotivation, results showed a significant group effect. Furthermore, a non-significant learning effect and group learning interaction were reported. The paired Student's T -test showed that, from T0 to T2, amotivation decreased significantly in the experimental group ( p = 0.011) and did not change in the control group. The independent Student T -test revealed that amotivation recorded at T2 was lower in the experimental compared to the control group ( p = 0.002).

4. Discussion

The main purpose of this study was to compare the effects of the problem-solving vs. traditional method on motivation and learning during physical education courses. The results revealed that the problem-solving method is more effective than the traditional method in increasing students' motivation and improving their learning. Moreover, the results showed that mean wait times and deviant behaviors decreased using the problem-solving method. Interestingly, the average time spent on appropriate engagement increased using the problem-solving method compared to the traditional method. When using the traditional method, the average wait times increased and, as a result, the time spent on appropriate engagement decreased. Then, following the decrease in deviant behaviors and waiting times, an increase in the time spent warming up was evident (i.e., appropriate engagement). Indeed, there was an improvement in engagement time using the problem-solving method and a decrease using the traditional method. On the other hand, there was a decrease in motor engagement 3 in favor of motor engagement 2. Indeed, it has been shown that the problem-solving method has been used in the learning process and allows for its improvement (Docktor et al., 2015 ). In addition, it could also produce better quality solutions and has higher scores on conceptual and problem-solving measures. It is also a good method for the learning process to enhance students' academic performance (Docktor et al., 2015 ; Ali, 2019 ). In contrast, the traditional method limits the ability of teachers to reach and engage all students (Cook and Artino, 2016 ). Furthermore, it produces passive learning with an understanding of basic knowledge which is characterized by its weakness (Goldstein, 2016 ). Taken together, it appears that the problem-solving method promotes and improves learning more than the traditional method.

It should be acknowledged that other factors, such as motivation, could influence learning. In this context, our results showed that the method of problem-solving could improve the motivation of the learners. This motivation includes several variables that change depending on the situation, namely the intrinsic motivation that pushes the learner to engage in an activity for the interest and pleasure linked to the practice of the latter (Komarraju et al., 2009 ; Guiffrida et al., 2013 ; Chedru, 2015 ). The student, therefore, likes to learn through problem-solving and neglects that of the traditional method. These results are concordant with others (Deci and Ryan, 1985 ; Chedru, 2015 ; Ryan and Deci, 2020 ). Regarding the three forms of extrinsic motivation: first, extrinsic motivation by an identified regulation which manifests itself in a high degree of self-determination where the learner engages in the activity because it is important for him (Deci and Ryan, 1985 ; Chedru, 2015 ). This explains the significant difference between the two groups. Then, the motivation by external regulation which is characterized by a low degree of self-determination such as the behavior of the learner is manipulated by external circumstances such as obtaining rewards or the removal of sanctions (Deci and Ryan, 1985 ; Chedru, 2015 ). For this, the means of this variable decreased for the experimental group which is intrinsically motivated. He does not need any reward to work and is not afraid of punishment because he is self-confident. Third, amotivation is at the opposite end of the self-determination continuum. Unmotivated students are the most likely to feel negative emotions (Ratelle et al., 2007 ; David, 2010 ), to have low self-esteem (Deci and Ryan, 1995 ), and who attempts to abandon their studies (Vallerand et al., 1997 ; Blanchard et al., 2005 ). So, more students are motivated by external regulation or demotivated, less interest they show and less effort they make, and more likely they are to fail (Grolnick et al., 1991 ; Miserandino, 1996 ; Guay et al., 2000 ; Blanchard et al., 2005 ).

It is worth noting that there is a close link between motivation and learning (Bessa et al., 2021 ; Rossa et al., 2021 ). Indeed, when the learner's motivation is high, so will his learning. However, all this depends on the method used (Norboev, 2021 ). For example, the method of problem-solving increase motivation more than the traditional method, as evidenced by several researchers (Parish and Treasure, 2003 ; Artino and Stephens, 2009 ; Kim and Frick, 2011 ; Lemos and Veríssimo, 2014 ).

Given the effectiveness of the problem-solving method in improving students' learning and motivation, it should be used during physical education teaching. This could be achieved through the organization of comprehensive training programs, seminars, and workshops for teachers so to master and subsequently be able to use the problem-solving method during physical education lessons.

Despite its novelty, the present study suffers from a few limitations that should be acknowledged. First, a future study, consisting of a group taught using the mixed method would preferable so to better elucidate the true impact of this teaching and learning method. Second, no gender and/or age group comparisons were performed. This issue should be addressed in future investigations. Finally, the number of participants is limited. This may be due to working in a secondary school where the number of students in a class is limited to 30 students. Additionally, the number of participants fell to 53 after excluding certain students (exempted, absent for a session, exercising in civil clubs or member of the school association). Therefore, to account for classes of finite size, a cluster-based trial would be beneficial in the future. Moreover, future studies investigating the effect of the active method in reducing some behaviors (e.g., disruptive behaviors) and for the improvement of pupils' attention are warranted.

5. Conclusion

There was an improvement in student learning in favor of the problem-solving method. Additionally, we found that the motivation of learners who were taught using the problem-solving method was better than that of learners who were educated by the traditional method.

Data availability statement

Ethics statement.

University Research Ethics Board approval was obtained before recruiting participants who were subsequently informed of the nature, objective, methodology, and constraints. Teacher, school director, parental/guardian, and child informed consent was obtained prior to participation in the study. In addition, exclusion criteria included; the practice of handball activity in civil/competitive/amateur clubs or in the high school sports association. Written informed consent to participate in this study was provided by the participants' legal guardian/next of kin.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Acknowledgments

Special thanks for all students and physical education teaching staff from the 15 November 1955 Secondary School, who generously shared their time, experience, and materials for the proposes of this study.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer MJ declared a shared affiliation, with no collaboration, with the authors GE, NS, LM, and KT to the handling editor at the time of review.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

  • Adunola O., Ed B., Adeniran A. (2012). The Impact of Teachers' Teaching Methods on the Academic Performance of Primary School Pupils . Ogun: Ego Booster Books. [ Google Scholar ]
  • Ali S. S. (2019). Problem based learning: A student-centered approach . Engl. Lang. Teach . 12 , 73. 10.5539/elt.v12n5p73 [ CrossRef ] [ Google Scholar ]
  • Ang S. C., Penney D. (2013). Promoting social and emotional learning outcomes in physical education: Insights from a school-based research project in Singapore . Asia-Pac. J. Health Sport Phys. Educ . 4 , 267–286. 10.1080/18377122.2013.836768 [ CrossRef ] [ Google Scholar ]
  • Artino A. R., Stephens J. M. (2009). Academic motivation and self-regulation: A comparative analysis of undergraduate and graduate students learning online . Internet. High. Educ. 12 , 146–151. 10.1016/j.iheduc.2009.02.001 [ CrossRef ] [ Google Scholar ]
  • Arvind K., Kusum G. (2017). Teaching approaches, methods and strategy . Sch. Res. J. Interdiscip. Stud. 4 , 6692–6697. 10.21922/srjis.v4i36.10014 [ CrossRef ] [ Google Scholar ]
  • Ayeni A. J. (2011). Teachers' professional development and quality assurance in Nigerian secondary schools . World J. Educ. 1 , 143. 10.5430/wje.v1n2p143 [ CrossRef ] [ Google Scholar ]
  • Bessa C., Hastie P., Rosado A., Mesquita I. (2021). Sport education and traditional teaching: Influence on students' empowerment and self-confidence in high school physical education classes . Sustainability 13 , 578. 10.3390/su13020578 [ CrossRef ] [ Google Scholar ]
  • Bi M., Zhao Z., Yang J., Wang Y. (2019). Comparison of case-based learning and traditional method in teaching postgraduate students of medical oncology . Med. Teach . 4 , 1124–1128. 10.1080/0142159X.2019.1617414 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Blanchard C., Pelletier L., Otis N., Sharp E. (2005). Role of self-determination and academic ability in predicting school absences and intention to drop out . J. Educ. Sci. 30 , 105–123. 10.7202/011772ar [ CrossRef ] [ Google Scholar ]
  • Blázquez D. (2016). Métodos de enseñanza en Educación Física . Enfoques innovadores para la enseñanza de competencias . Barcelona: Inde Publisher. [ Google Scholar ]
  • Brunelle J., Drouin D., Godbout P., Tousignant M. (1988). Supervision of physical activity intervention. Montreal, Canada: G. Morin, Dl . Open J. Soc. Sci. 8. [ Google Scholar ]
  • Bunker D., Thorpe R. (1982). A model for the teaching of games in secondary schools . Bull. Phys. Educ . 18 , 5–8. [ Google Scholar ]
  • Casey A. (2014). Models-based practice: Great white hope or white elephant? Phys. Educ. Sport Pedagog. 19 , 18–34. 10.1080/17408989.2012.726977 [ CrossRef ] [ Google Scholar ]
  • Casey A., MacPhail A., Larsson H., Quennerstedt M. (2021). Between hope and happening: Problematizing the M and the P in models-based practice . Phys. Educ. Sport Pedagog. 26 , 111–122. 10.1080/17408989.2020.1789576 [ CrossRef ] [ Google Scholar ]
  • Chedru M. (2015). Impact of motivation and learning styles on the academic performance of engineering students . J. Educ. Sci. 41 , 457–482. 10.7202/1035313ar [ CrossRef ] [ Google Scholar ]
  • Cook D. A., Artino A. R. (2016). Motivation to learn: An overview of contemporary theories . J. Med. Educ . 50 , 997–1014. 10.1111/medu.13074 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cronbach L. J. (1951). Coefficient alpha and the internal structure of tests . Psychometrika. J. 16 , 297–334. 10.1007/BF02310555 [ CrossRef ] [ Google Scholar ]
  • Cunningham J., Sood K. (2018). How effective are working memory training interventions at improving maths in schools: a study into the efficacy of working memory training in children aged 9 and 10 in a junior school? . Education 46 , 174–187. 10.1080/03004279.2016.1210192 [ CrossRef ] [ Google Scholar ]
  • Darling-Hammond L., Flook L., Cook-Harvey C., Barron B., Osher D. (2020). Implications for educational practice of the science of learning and development . Appl. Dev. Sci. 24 , 97–140. 10.1080/10888691.2018.1537791 [ CrossRef ] [ Google Scholar ]
  • David A. (2010). Examining the relationship of personality and burnout in college students: The role of academic motivation . E. M. E. Rev. 1 , 90–104. [ Google Scholar ]
  • Deci E., Ryan R. (1985). Intrinsic motivation and self-determination in human behavior . Perspect. Soc. Psychol . 2271 , 7. 10.1007/978-1-4899-2271-7 [ CrossRef ] [ Google Scholar ]
  • Deci E. L., Ryan R. M. (1995). “Human autonomy,” in Efficacy, Agency, and Self-Esteem (Boston, MA: Springer; ). [ Google Scholar ]
  • Dickinson B. L., Lackey W., Sheakley M., Miller L., Jevert S., Shattuck B. (2018). Involving a real patient in the design and implementation of case-based learning to engage learners . Adv. Physiol. Educ. 42 , 118–122. 10.1152/advan.00174.2017 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Docktor J. L., Strand N. E., Mestre J. P., Ross B. H. (2015). Conceptual problem solving in high school . Phys. Rev. ST Phys. Educ. Res. 11 , 20106. 10.1103/PhysRevSTPER.11.020106 [ CrossRef ] [ Google Scholar ]
  • Dyson B., Grineski S. (2001). Using cooperative learning structures in physical education . J. Phys. Educ. Recreat. Dance. 72 , 28–31. 10.1080/07303084.2001.10605831 [ CrossRef ] [ Google Scholar ]
  • Ergül N. R., Kargin E. K. (2014). The effect of project based learning on students' science success . Procedia. Soc. Behav. Sci. 136 , 537–541. 10.1016/j.sbspro.2014.05.371 [ CrossRef ] [ Google Scholar ]
  • Fenouillet F. (2012). Les théories de la motivation . Psycho Sup : Dunod. [ Google Scholar ]
  • Fidan M., Tuncel M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education . Comput. Educ . 142 , 103635. 10.1016/j.compedu.2019.103635 [ CrossRef ] [ Google Scholar ]
  • Garrett T. (2008). Student-centered and teacher-centered classroom management: A case study of three elementary teachers . J. Classr. Interact. 43 , 34–47. [ Google Scholar ]
  • Goldstein O. A. (2016). Project-based learning approach to teaching physics for pre-service elementary school teacher education students. Bevins S, éditeur . Cogent. Educ. 3 , 1200833. 10.1080/2331186X.2016.1200833 [ CrossRef ] [ Google Scholar ]
  • Gordon B., Doyle S. (2015). Teaching personal and social responsibility and transfer of learning: Opportunities and challenges for teachers and coaches . J. Teach. Phys. Educ. 34 , 152–161. 10.1123/jtpe.2013-0184 [ CrossRef ] [ Google Scholar ]
  • Grolnick W. S., Ryan R. M., Deci E. L. (1991). Inner resources for school achievement: Motivational mediators of children's perceptions of their parents . J. Educ. Psychol . 83 , 508–517. 10.1037/0022-0663.83.4.508 [ CrossRef ] [ Google Scholar ]
  • Guay F., Vallerand R. J., Blanchard C. (2000). On the assessment of situational intrinsic and extrinsic motivation: The Situational Motivation Scale (SIMS) . Motiv. Emot . 24 , 175–213. 10.1023/A:1005614228250 [ CrossRef ] [ Google Scholar ]
  • Guiffrida D., Lynch M., Wall A., Abel D. (2013). Do reasons for attending college affect academic outcomes? A test of a motivational model from a self-determination theory perspective . J. Coll. Stud. Dev. 54 , 121–139. 10.1353/csd.2013.0019 [ CrossRef ] [ Google Scholar ]
  • Hastie P. A., Casey A. (2014). Fidelity in models-based practice research in sport pedagogy: A guide for future investigations . J. Teach. Phys. Educ . 33 , 422–431. 10.1123/jtpe.2013-0141 [ CrossRef ] [ Google Scholar ]
  • Hu W. (2010). Creative scientific problem finding and its developmental trend . Creat. Res. J. 22 , 46–52. 10.1080/10400410903579551 [ CrossRef ] [ Google Scholar ]
  • Ilkiw J. E., Nelson R. W., Watson J. L., Conley A. J., Raybould H. E., Chigerwe M., et al.. (2017). Curricular revision and reform: The process, what was important, and lessons learned . J. Vet. Med. Educ . 44 , 480–489. 10.3138/jvme.0316-068R [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Johnson A. P. (2010). Making Connections in Elementary and Middle School Social Studies. 2nd Edn. London: SAGE. [ Google Scholar ]
  • Johnson D. W., Johnson R. T., Smith K. A. (1998). Active Learning: Cooperation in the College Classroom. 2nd Edn. Edina, MN: Interaction Press. [ Google Scholar ]
  • Kim K. J., Frick T. (2011). Changes in student motivation during online learning . J. Educ. Comput. 44 , 23. 10.2190/EC.44.1.a [ CrossRef ] [ Google Scholar ]
  • Kolesnikova I. (2016). Combined teaching method: An experimental study . World J. Educ. 6 , 51–59. 10.5430/wje.v6n6p51 [ CrossRef ] [ Google Scholar ]
  • Komarraju M., Karau S. J., Schmeck R. R. (2009). Role of the Big Five personality traits in predicting college students' academic motivation and achievement . Learn. Individ. Differ. 19 , 47–52. 10.1016/j.lindif.2008.07.001 [ CrossRef ] [ Google Scholar ]
  • Lakens D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t -tests and ANOVAs . Front. Psychol . 4 , 863. 10.3389/fpsyg.2013.00863 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lemos M. S., Veríssimo L. (2014). The relationships between intrinsic motivation, extrinsic motivation, and achievement, along elementary school . Procedia. Soc. Behav. Sci . 112 , 930–938. 10.1016/j.sbspro.2014.01.1251 [ CrossRef ] [ Google Scholar ]
  • Leo M. F., Mouratidis A., Pulido J. J., López-Gajardo M. A., Sánchez-Oliva D. (2022). Perceived teachers' behavior and students' engagement in physical education: the mediating role of basic psychological needs and self-determined motivation . Phys. Educ. Sport Pedagogy. 27 , 59–76. 10.1080/17408989.2020.1850667 [ CrossRef ] [ Google Scholar ]
  • Lonsdale C., Sabiston C., Taylor I., Ntoumanis N. (2011). Measuring student motivation for physical education: Examining the psychometric properties of the Perceived Locus of Causality Questionnaire and the Situational Motivation Scale . Psychol. Sport. Exerc . 12 , 284–292. 10.1016/j.psychsport.2010.11.003 [ CrossRef ] [ Google Scholar ]
  • Luo Y. J. (2019). The influence of problem-based learning on learning effectiveness in students' of varying learning abilities within physical education . Innov. Educ. Teach. Int. 56 , 3–13. 10.1080/14703297.2017.1389288 [ CrossRef ] [ Google Scholar ]
  • Maddeh T., Amamou S., Desbiens J., françois Souissi N. (2020). The management of disruptive behavior of secondary school students by Tunisian trainee teachers in physical education: Effects of a training program in the prevention and management of indiscipline . J. Educ. Fac . 4 , 323–344. 10.34056/aujef.674931 [ CrossRef ] [ Google Scholar ]
  • Manninen M., Campbell S. (2021). The effect of the sport education model on basic needs, intrinsic motivation and prosocial attitudes: A systematic review and multilevel meta-Analysis . Eur. Phys. Educ. Rev . 28 , 76–99. 10.1177/1356336X211017938 [ CrossRef ] [ Google Scholar ]
  • Menendez J. I., Fernandez-Rio J. (2017). Hybridising sport education and teaching for personal and social responsibility to include students with disabilities . Eur. J. Spec. Needs Educ. 32 , 508–524 10.1080/08856257.2016.1267943 [ CrossRef ] [ Google Scholar ]
  • Metzler M. (2017). Instructional Models in Physical Education . London: Routledge. [ Google Scholar ]
  • Miserandino M. (1996). Children who do well in school: Individual differences in perceived competence and autonomy in above-average children . J. Educ. Psychol . 88 , 203–214. 10.1037/0022-0663.88.2.203 [ CrossRef ] [ Google Scholar ]
  • Norboev N. N. (2021). Theoretical aspects of the influence of motivation on increasing the efficiency of physical education . Curr. Res. J. Pedagog . 2 , 247–252. 10.37547/pedagogics-crjp-02-10-44 [ CrossRef ] [ Google Scholar ]
  • Novak D. J. (2010). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations . J. E-Learn. Knowl. Soc . 6 , 21–30. 10.20368/1971-8829/441 [ CrossRef ] [ Google Scholar ]
  • Parish L. E., Treasure D. C. (2003). Physical activity and situational motivation in physical education: Influence of the motivational climate and perceived ability . Res. Q. Exerc. Sport. 74 , 173. 10.1080/02701367.2003.10609079 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pérez-Jorge D., González-Dorta D., Del Carmen Rodríguez-Jiménez D., Fariña-Hernández L. (2021). Problem-solving teacher training, the effect of the ProyectaMates Programme in Tenerife . International Educ . 49 , 777–7791. 10.1080/03004279.2020.1786427 [ CrossRef ] [ Google Scholar ]
  • Perrenoud P. (2003). Qu'est-ce qu'apprendre . Enfances Psy . 4 , 9–17. 10.3917/ep.024.0009 [ CrossRef ] [ Google Scholar ]
  • Pohan A., Asmin A., Menanti A. (2020). The effect of problem based learning and learning motivation of mathematical problem solving skills of class 5 students at SDN 0407 Mondang . BirLE . 3 , 531–539. 10.33258/birle.v3i1.850 [ CrossRef ] [ Google Scholar ]
  • Puigarnau S., Camerino O., Castañer M., Prat Q., Anguera M. T. (2016). El apoyo a la autonomía en practicantes de centros deportivos y de fitness para aumentar su motivación . Rev. Int. de Cienc. del deporte. 43 , 48–64. 10.5232/ricyde2016.04303 [ CrossRef ] [ Google Scholar ]
  • Ratelle C. F., Guay F., Vallerand R. J., Larose S., Senécal C. (2007). Autonomous, controlled, and amotivated types of academic motivation: A person-oriented analysis . J. Educ. Psychol. 99 , 734–746. 10.1037/0022-0663.99.4.734 [ CrossRef ] [ Google Scholar ]
  • Rivera-Pérez S., Fernandez-Rio J., Gallego D. I. (2020). Effects of an 8-week cooperative learning intervention on physical education students' task and self-approach goals, and Emotional Intelligence . Int. J. Environ. Res. Public Health . 18 , 61. 10.3390/ijerph18010061 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rolland V. (2009). Motivation in the School Context . 5th Edn . Belguim: De Boeck Superior, 218. [ Google Scholar ]
  • Rossa R., Maulidiah R. H., Aryni Y. (2021). The effect of problem solving technique and motivation toward students' writing skills . J. Pena. Edukasi. 8 , 43–54. 10.54314/jpe.v8i1.654 [ CrossRef ] [ Google Scholar ]
  • Ryan R., Deci E. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions . Contemp. Educ. Psychol . 61 , 101860. 10.1016/j.cedpsych.2020.101860 [ CrossRef ] [ Google Scholar ]
  • Siedentop D., Hastie P. A., Van Der Mars H. (2011). Complete Guide to Sport Education, 2nd Edn. Champaign, IL: Human Kinetics. [ Google Scholar ]
  • Skinner B. F. (1985). Cognitive science and behaviourism . Br. J. Psychol. 76 , 291–301. 10.1111/j.2044-8295.1985.tb01953.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Standage M., Gillison F. B., Ntoumanis N., Treasure D. C. (2012). Predicting students' physical activity and health-related well-being: a prospective cross-domain investigation of motivation across school physical education and exercise settings . J. Sport. Exerc. Psychol . 34 , 37–60. 10.1123/jsep.34.1.37 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tebabal A., Kahssay G. (2011). The effects of student-centered approach in improving students' graphical interpretation skills and conceptual understanding of kinematical motion . Lat. Am. J. Phys. Educ. 5 , 9. [ Google Scholar ]
  • Vallerand R. J., Fbrtier M. S., Guay F. (1997). Self-determination and persistence in a real-life setting toward a motivational model of high school dropout . J. Pers. Soc. Psychol. 2 , 1161–1176. 10.1037/0022-3514.72.5.1161 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ward P., Mitchell M. F., van der Mars H., Lawson H. A. (2021). Chapter 3: PK+12 School physical education: conditions, lessons learned, and future directions . J. Teach. Phys. Educ. 40 , 363–371. 10.1123/jtpe.2020-0241 [ CrossRef ] [ Google Scholar ]

COMMENTS

  1. PDF The Herring Problem Solving Method

    This video explains the Herring Problem Solving Method. This is a problem solving model created by Police Chief Jamie Herring, a member of the University of Phoenix Faculty. The Herring Problem Solving Method ID: 02-VIDEO-53d2dfabdd7d12d094c4c97c RECORDED ON Jul 30, 2014 CATEGORY Criminal Justice and Security TAGS CJA/355, grant writing, Jamie ...

  2. PDF THIRTEEN PROBLEM-SOLVING MODELS

    The Six-Step method provides a focused procedure for the problem solving (PS) group. It ensures consistency, as everyone understands the approach to be used. By using data, it helps eliminate bias and preconceptions, leading to greater objectivity. It helps to remove divisions and encourages collaborative working.

  3. Cause and Effect Analysis

    Professor Kaoru Ishikawa created Cause and Effect Analysis in the 1960s. The technique uses a diagram-based approach for thinking through all of the possible causes of a problem. This helps you to carry out a thorough analysis of the situation. There are four steps to using the tool. Identify the problem.

  4. Ishikawa diagram

    Ishikawa diagrams (also called fishbone diagrams, herringbone diagrams, cause-and-effect diagrams) are causal diagrams created by Kaoru Ishikawa that show the potential causes of a specific event.. Common uses of the Ishikawa diagram are product design and quality defect prevention to identify potential factors causing an overall effect. Each cause or reason for imperfection is a source of ...

  5. 35 problem-solving techniques and methods for solving complex problems

    This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams. Start by creating a desired end state or outcome and bare this in mind - any process solving model is made more effective by knowing what you are moving towards. Create a quadrant ...

  6. The Herring Problem Solving Method on Vimeo

    This is "The Herring Problem Solving Method" by Educational Technology on Vimeo, the home for high quality videos and the people who love them. Solutions . Video marketing. Power your marketing strategy with perfectly branded videos to drive better ROI. Event marketing. Host virtual events and webinars to increase engagement and generate leads. ...

  7. Problem solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...

  8. Problem Solving

    Abstract. Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. Problems can be classified as routine or nonroutine, and as well defined or ill defined.

  9. Problem-Solving Strategies and Obstacles

    Problem-solving involves taking certain steps and using psychological strategies. Learn problem-solving techniques and how to overcome obstacles to solving problems. ... Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code. Soc Personal Psychol Compass. 2021;15(2):e12579. doi:10.1111 ...

  10. University Library: CJA/426: Grant Writing and Funding: Week 1

    The Herring Problem Solving Method (02:35) Learn about the strategy that contains an algorithm comprising of 9 steps that could be used to come up with a solution to a problem. Note: We do our best to ensure these citations are correct within our system's constraints. We suggest checking your citations to make sure they meet current APA standards.

  11. How to master the seven-step problem-solving process

    Looked at this way, it's no surprise that McKinsey takes problem solving very seriously, testing for it during the recruiting process and then honing it, in McKinsey consultants, through immersion in a structured seven-step method. To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and ...

  12. Chasing red herrings: Memory of distractors causes fixation ...

    Two experiments tested the red herring retrieval hypothesis, which states that fixation in creative problem solving is worse when memory for red herrings (i.e., inappropriate or incorrect solutions) is strengthened. In Experiment 1, when associations between Remote Associates Test (RAT) problem words (e.g., COTTAGE, SWISS, CAKE) and related red herring words (e.g., hut, chocolate, icing) were ...

  13. The Art of Effective Problem Solving: A Step-by-Step Guide

    Table of Contents. Problem Solving Methodologies. A3 Problem Solving Method: Step 1 - Define the Problem. Step 2 - Gather Information and Brainstorm Ideas. Step 3 - Evaluate Options and Choose the Best Solution. Step 4 - Implement and Monitor the Solution. Conclusion.

  14. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  15. Learning, Problem Solving, and Mindtools

    Learning, Problem Solving, and Mindtools is inspired by the substantial body of learning research by David H. Jonassen in the areas of mind tools and problem solving. The focus of the volume is on educational technology, especially with regard to how new technologies have facilitated and supported problem solving and critical thinking. Each chapter focuses on a particular aspect of learning ...

  16. Law Enforcement Assisted Diversion Program Chapter

    It is evident that the problem the program aims to solve is low-level prostitution and drug crimes. As per The Herring Problem Solving Method, identifying the problem is the first step of solving a problem. There are two solutions through which the identified problem can be solved: imprisonment and/or rehabilitation.

  17. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  18. CJA 355 Problem Solving Evaluation Presenation-3

    View Homework Help - CJA 355 Problem Solving Evaluation Presenation-3 from CJA 355 at University of Phoenix. Post Program Evaluation: Police Body Cameras Luke Seth, Eric Holsey Samantha May ... Herring Problem Solving Method . Want to read all 9 pages? Previewing 9 of 9 pages Upload your ...

  19. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In general, effective problem-solving strategies include the following steps: Define the problem. Come up with alternative solutions. Decide on a solution. Implement the solution. Problem-solving ...

  20. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  21. SOLUTION: The Herring Problem Solving Method

    Use the payback period method and determine which project is better from a cash flow standpoint. Show your work and include any formulas used to calculate PP. 2. Net Present Value A recent project nominated for consideration at your company has a four-year cash flow of $20,000; $25,000; $30,000; and $50,000.

  22. Frontiers

    The problem-solving method encourages group discussion and teamwork (Fidan and Tuncel, 2019). Additionally, in this pedagogical approach, the role of the teacher is a facilitator of learning, and they take on a much more interactive and less rebarbative role (Garrett, 2008).

  23. The problem-solving method: Efficacy for learning and motivation in the

    Methods. Fifty-three students (M age 15 ± 0.1 years), in their 1st year of the Tunisian secondary education system, voluntarily participated in this study, and randomly assigned to a control or experimental group.Participants in the control group were taught using the traditional methods, whereas participants in the experimental group were taught using the problem-solving method.