TutorialsTonight Logo

Python Conditional Assignment

When you want to assign a value to a variable based on some condition, like if the condition is true then assign a value to the variable, else assign some other value to the variable, then you can use the conditional assignment operator.

In this tutorial, we will look at different ways to assign values to a variable based on some condition.

1. Using Ternary Operator

The ternary operator is very special operator in Python, it is used to assign a value to a variable based on some condition.

It goes like this:

Here, the value of variable will be value_if_true if the condition is true, else it will be value_if_false .

Let's see a code snippet to understand it better.

You can see we have conditionally assigned a value to variable c based on the condition a > b .

2. Using if-else statement

if-else statements are the core part of any programming language, they are used to execute a block of code based on some condition.

Using an if-else statement, we can assign a value to a variable based on the condition we provide.

Here is an example of replacing the above code snippet with the if-else statement.

3. Using Logical Short Circuit Evaluation

Logical short circuit evaluation is another way using which you can assign a value to a variable conditionally.

The format of logical short circuit evaluation is:

It looks similar to ternary operator, but it is not. Here the condition and value_if_true performs logical AND operation, if both are true then the value of variable will be value_if_true , or else it will be value_if_false .

Let's see an example:

But if we make condition True but value_if_true False (or 0 or None), then the value of variable will be value_if_false .

So, you can see that the value of c is 20 even though the condition a < b is True .

So, you should be careful while using logical short circuit evaluation.

While working with lists , we often need to check if a list is empty or not, and if it is empty then we need to assign some default value to it.

Let's see how we can do it using conditional assignment.

Here, we have assigned a default value to my_list if it is empty.

Assign a value to a variable conditionally based on the presence of an element in a list.

Now you know 3 different ways to assign a value to a variable conditionally. Any of these methods can be used to assign a value when there is a condition.

The cleanest and fastest way to conditional value assignment is the ternary operator .

if-else statement is recommended to use when you have to execute a block of code based on some condition.

Happy coding! 😊

  • Python Basics
  • Interview Questions
  • Python Quiz
  • Popular Packages
  • Python Projects
  • Practice Python
  • AI With Python
  • Learn Python3
  • Python Automation
  • Python Web Dev
  • DSA with Python
  • Python OOPs
  • Dictionaries

Conditional Statements in Python

  • Python Continue Statement
  • Python If Else Statements - Conditional Statements
  • Using Else Conditional Statement With For loop in Python
  • Check multiple conditions in if statement - Python
  • Nested-if statement in Python
  • Statement, Indentation and Comment in Python
  • Python Match-Case Statement
  • Python pass Statement
  • Conditional Decorators in Python
  • Conditional Inheritance in Python
  • Short Circuiting Techniques in Python
  • String Comparison in Python
  • One Liner for Python if-elif-else Statements
  • Loops and Control Statements (continue, break and pass) in Python
  • Boolean data type in Python
  • How to Use IF Statement in MySQL Using Python
  • Conditional Statements in JavaScript
  • Conditional Statements | Shell Script
  • MATLAB - Conditional Statements
  • Conditional Statements in COBOL
  • Control Statements in R Programming
  • Combining Conditional Statements in Golang
  • Conditional Operator in Programming
  • CoffeeScript Conditional Statements
  • Conditionals in Rust
  • Conditional or Ternary Operator (?:) in C
  • Solidity - Decision Making Statements
  • If statement in Programming
  • Conditional Statements in Programming | Definition, Types, Best Practices

Understanding and mastering Python’s conditional statements is fundamental for any programmer aspiring to write efficient and robust code. In this guide, we’ll delve into the intricacies of conditional statements in Python, covering the basics, advanced techniques, and best practices.

  • What are Conditional Statements?

Conditional Statements are statements in Python that provide a choice for the control flow based on a condition. It means that the control flow of the Python program will be decided based on the outcome of the condition.

Now let us see how Conditional Statements are implemented in Python.

Types of Conditional Statements in Python

Table of Content

  • Types of Conditional Statement in Python

1. If Conditional Statement in Python

  • 2. If else Conditional Statement in Python
  • 3. Nested if..else Conditional Statement in Python
  • 4. If-elif-else Conditional Statement in Python
  • 5. Ternary Expression Conditional Statement in Python

Best Practices for Using Conditional Statements

If the simple code of block is to be performed if the condition holds then the if statement is used. Here the condition mentioned holds then the code of the block runs otherwise not.

Syntax of If Statement :

2. If else Conditional Statements in Python

In a conditional if Statement the additional block of code is merged as an else statement which is performed when if condition is false. 

Syntax of Python If-Else : 

3. Nested if..else Conditional Statements in Python

Nested if..else means an if-else statement inside another if statement. Or in simple words first, there is an outer if statement, and inside it another if – else statement is present and such type of statement is known as nested if statement. We can use one if or else if statement inside another if or else if statements.

4. If-elif-else Conditional Statements in Python

The if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final “else” statement will be executed.

5. Ternary Expression Conditional Statements in Python

The Python ternary Expression determines if a condition is true or false and then returns the appropriate value in accordance with the result. The ternary Expression is useful in cases where we need to assign a value to a variable based on a simple condition, and we want to keep our code more concise — all in just one line of code.

Syntax of Ternary Expression

  • Keep conditions simple and expressive for better readability.
  • Avoid deeply nested conditional blocks; refactor complex logic into smaller, more manageable functions.
  • Comment on complex conditions to clarify their purpose.
  • Prefer the ternary operator for simple conditional assignments.
  • Advanced Techniques:
  • Using short-circuit evaluation for efficiency in complex conditions.
  • Leveraging the any() and all() functions with conditions applied to iterables.
  • Employing conditional expressions within list comprehensions and generator expressions.

Please Login to comment...

Similar reads.

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

A Comprehensive Guide to Using Conditionals in Python with Real-World Examples

Conditionals are a fundamental concept in programming that allow code to execute differently based on certain conditions. In Python, conditionals take the form of if , elif , and else statements. Mastering conditionals is key to writing dynamic, flexible programs that can handle different scenarios and make decisions.

This comprehensive guide will provide a deep dive into using conditionals in Python for real-world applications. We will cover the following topics:

Table of Contents

Basic syntax and structure of conditionals, comparison operators, logic operators, if statements, if-else statements, if-elif-else statements, nested conditionals, ternary operator, common errors and mistakes, user input validation, handling different user types, recommendation systems, data analysis and visualization, game design and gameplay logic.

The basic syntax for an if statement in Python is:

The condition can be any expression that evaluates to True or False. The code block indented under the if statement runs only when the condition is True.

Some key points:

  • The condition follows the if keyword and ends with a colon (:)
  • The code block after the condition is indented (usually 4 spaces)
  • if , elif , and else are lowercase
  • Code blocks end when the indentation returns to the left margin

Let’s look at a simple example:

Here we check if the value of age is greater than or equal to 18. If so, we print a message saying the person can vote. The print statement is indented under the if to indicate it runs conditionally.

Comparison operators allow us to compare two values and evaluate to True or False. They are essential for writing conditional expressions.

Here are some examples of using comparison operators in conditional statements:

We can also chain multiple comparisons using logic operators like and and or .

Logic operators allow us to combine multiple conditional expressions and evaluate the overall logic.

The two main logic operators are:

  • and - Both conditions must be True for overall expression to be True
  • or - Either one condition must be True for overall expression to be True

Both age >= 18 and citizen must be True for the print statement to execute.

Other logical operators include:

  • not - Negates or flips the Boolean value
  • in - Checks if a value is present in a sequence
  • not in - Checks if a value is not present

Logic operators allow us to handle complex conditional logic in a concise way.

The if statement is used when we want to execute code only when some condition is fulfilled. For example:

Here we only want to print “Great job!” when the score is 80 or higher. The if statement allows us to specify this condition.

Some things to note about if statements:

  • They execute the code block only when condition evaluates to True
  • The condition can use any comparison or logical operators
  • We can use complex logic by chaining multiple conditions with and , or , not
  • The code block must be indented under the if statement

Let’s look at some more examples:

The if statement allows us to execute code conditioned on any criteria we specify in the conditional expression.

The if-else statement extends the simple if by allowing us to specify code that executes when the condition evaluates to False.

The syntax is:

Let’s look at an example:

Here if age is less than 18, we print a different message using the else block.

Key points on if-else :

  • The else can only be used after an if statement
  • The else block runs when the if condition is False
  • We can chain multiple elif blocks for more conditions (see next section)
  • Only one code block will execute - either if or else

More examples:

The if-else statement allows us to conditionally run different code blocks based on the evaluation of the condition expression.

The elif statement is used to chain multiple conditional checks. Using elif we can have multiple conditions evaluated in order.

This allows us to check many conditions and selectively run code for each case. For example:

Here we check the score against multiple grade thresholds. First if to check for A, then elif to check for B, etc. The final else acts as a default case if none match.

Some key points on if-elif-else :

  • Only one block will execute
  • Each condition is checked in order
  • elif lets us chain multiple conditions
  • The else block is optional

The elif conditionals allow us to concisely handle multiple scenarios without writing nested if statements.

Nested conditionals refer to if statements within if statements. We can nest conditionals indefinitely to handle complex logic.

For example:

The outer if checks age, and the inner if-else selectively prints messages for students vs non-students.

Nested conditionals are useful when:

  • We want to check secondary conditions after initial condition passes
  • Breaking down complex conditional logic into simple steps
  • Handling specific cases before handling general cases

However, deeply nested conditionals can make code hard to read. In those cases, functions may be better for readability.

The ternary operator provides a compact syntax for basic conditional logic:

This condenses a basic if-else check into one line.

Some points on ternary operator usage:

  • Best for simple one line conditionals
  • Hard to read for complex logic
  • Can be nested but not recommended
  • Has form value_if_true if condition else value_if_false

The ternary operator is ideal for quick conditional assignments or returning values conditionally from functions.

Some common errors when using conditionals include:

  • Forgetting colons : after conditionals
  • Indentation errors with code blocks
  • Using assignment = instead of comparisons ==
  • Misspellings in conditionals like adn , ro , etc.
  • Missing parentheses around conditions
  • Checking equality on two different types

These often cause syntax errors or unexpected logic errors. Always double check the condition expressions and indentations when debugging conditional issues.

Proper code commenting and leaving notes during coding can help identify issues with complex conditional statements. Start small and test conditionals thoroughly when chaining many elif clauses.

Real-World Examples and Exercises

Next we’ll explore some real-world examples to illustrate how conditionals are used in Python programming for tasks like user input validation, handling different user types, recommendation engines, data analysis, game design, and more.

Validating user input is crucial for many programs. For example:

We first check if the input is a digit, then convert to an integer. Next we check if age meets the 18+ requirement for access. The else handles any non-digit input.

Here are some other user input validation examples:

Careful input validation prevents bugs and errors down the line.

We can use conditionals to handle different features or pricing for various user types:

Different access levels can also be handled:

Conditionals allow flexible user handling in large applications.

Many recommendation systems use conditional logic to provide personalized suggestions based on certain factors. For example:

Products can be intelligently recommended using if-elif conditional chains.

When analyzing and visualizing data in Python, we can use conditionals to handle missing data or special cases:

Conditionals help account for incomplete data and customize data visualization.

Games make heavy use of conditionals to implement gameplay mechanics, physics, ballistics, animations, etc.

This implements a basic combat loop with damage dealt conditionally based on hit chance rolls. The end condition checks remaining health to determine winner.

Many other gameplay elements can be implemented using conditionals - physics, animations, resource management, abilities, etc.

Conditionals allow us to execute code selectively based on Boolean logic and are a core programming concept in any language. Python provides an intuitive syntax using if , else , elif for implementing conditional code execution.

In this guide, we covered the basics of conditionals in Python including operators, complex conditional chains, nesting conditionals, ternary expressions, and common errors. We examined real-world examples of using conditional logic for input validation, handling user types, recommendation systems, data analysis, and game mechanics.

Conditionals enable you to write dynamic, flexible programs that can make intelligent decisions and handle varying scenarios. Mastering their usage takes practice, but being comfortable with conditional logic will enable you to take on more advanced programming tasks.

  •     python
  •     control-flow

Conditional expression (ternary operator) in Python

Python has a conditional expression (sometimes called a "ternary operator"). You can write operations like if statements in one line with conditional expressions.

  • 6. Expressions - Conditional expressions — Python 3.11.3 documentation

Basics of the conditional expression (ternary operator)

If ... elif ... else ... by conditional expressions, list comprehensions and conditional expressions, lambda expressions and conditional expressions.

See the following article for if statements in Python.

  • Python if statements (if, elif, else)

In Python, the conditional expression is written as follows.

The condition is evaluated first. If condition is True , X is evaluated and its value is returned, and if condition is False , Y is evaluated and its value is returned.

If you want to switch the value based on a condition, simply use the desired values in the conditional expression.

If you want to switch between operations based on a condition, simply describe each corresponding expression in the conditional expression.

An expression that does not return a value (i.e., an expression that returns None ) is also acceptable in a conditional expression. Depending on the condition, either expression will be evaluated and executed.

The above example is equivalent to the following code written with an if statement.

You can also combine multiple conditions using logical operators such as and or or .

  • Boolean operators in Python (and, or, not)

By combining conditional expressions, you can write an operation like if ... elif ... else ... in one line.

However, it is difficult to understand, so it may be better not to use it often.

The following two interpretations are possible, but the expression is processed as the first one.

In the sample code below, which includes three expressions, the first expression is interpreted like the second, rather than the third:

By using conditional expressions in list comprehensions, you can apply operations to the elements of the list based on the condition.

See the following article for details on list comprehensions.

  • List comprehensions in Python

Conditional expressions are also useful when you want to apply an operation similar to an if statement within lambda expressions.

In the example above, the lambda expression is assigned to a variable for convenience, but this is not recommended by PEP8.

Refer to the following article for more details on lambda expressions.

  • Lambda expressions in Python

Related Categories

Related articles.

  • Shallow and deep copy in Python: copy(), deepcopy()
  • Composite two images according to a mask image with Python, Pillow
  • OpenCV, NumPy: Rotate and flip image
  • pandas: Check if DataFrame/Series is empty
  • Check pandas version: pd.show_versions
  • Python if statement (if, elif, else)
  • pandas: Find the quantile with quantile()
  • Handle date and time with the datetime module in Python
  • Get image size (width, height) with Python, OpenCV, Pillow (PIL)
  • Convert between Unix time (Epoch time) and datetime in Python
  • Convert BGR and RGB with Python, OpenCV (cvtColor)
  • Matrix operations with NumPy in Python
  • pandas: Replace values in DataFrame and Series with replace()
  • Uppercase and lowercase strings in Python (conversion and checking)
  • Calculate mean, median, mode, variance, standard deviation in Python

How to Use Conditional Statements in Python – Examples of if, else, and elif

Oluseye Jeremiah

Conditional statements are an essential part of programming in Python. They allow you to make decisions based on the values of variables or the result of comparisons.

In this article, we'll explore how to use if, else, and elif statements in Python, along with some examples of how to use them in practice.

How to Use the if Statement in Python

The if statement allows you to execute a block of code if a certain condition is true. Here's the basic syntax:

The condition can be any expression that evaluates to a Boolean value (True or False). If the condition is True, the code block indented below the if statement will be executed. If the condition is False, the code block will be skipped.

Here's an example of how to use an if statement to check if a number is positive:

In this example, we use the > operator to compare the value of num to 0. If num is greater than 0, the code block indented below the if statement will be executed, and the message "The number is positive." will be printed.

How to Use the else Statement in Python

The else statement allows you to execute a different block of code if the if condition is False. Here's the basic syntax:

If the condition is True, the code block indented below the if statement will be executed, and the code block indented below the else statement will be skipped.

If the condition is False, the code block indented below the else statement will be executed, and the code block indented below the if statement will be skipped.

Here's an example of how to use an if-else statement to check if a number is positive or negative:

In this example, we use an if-else statement to check if num is greater than 0. If it is, the message "The number is positive." is printed. If it is not (that is, num is negative or zero), the message "The number is negative." is printed.

How to Use the elif Statement in Python

The elif statement allows you to check multiple conditions in sequence, and execute different code blocks depending on which condition is true. Here's the basic syntax:

The elif statement is short for "else if", and can be used multiple times to check additional conditions.

Here's an example of how to use an if-elif-else statement to check if a number is positive, negative, or zero:

Use Cases For Conditional Statements

Example 1: checking if a number is even or odd..

In this example, we use the modulus operator (%) to check if num is evenly divisible by 2.

If the remainder of num divided by 2 is 0, the condition num % 2 == 0 is True, and the code block indented below the if statement will be executed. It will print the message "The number is even."

If the remainder is not 0, the condition is False, and the code block indented below the else statement will be executed, printing the message "The number is odd."

Example 2: Assigning a letter grade based on a numerical score

In this example, we use an if-elif-else statement to assign a letter grade based on a numerical score.

The if statement checks if the score is greater than or equal to 90. If it is, the grade is set to "A". If not, the first elif statement checks if the score is greater than or equal to 80. If it is, the grade is set to "B". If not, the second elif statement checks if the score is greater than or equal to 70, and so on. If none of the conditions are met, the else statement assigns the grade "F".

Example 3: Checking if a year is a leap year

In this example, we use nested if statements to check if a year is a leap year. A year is a leap year if it is divisible by 4, except for years that are divisible by 100 but not divisible by 400.

The outer if statement checks if year is divisible by 4. If it is, the inner if statement checks if it is also divisible by 100. If it is, the innermost if statement checks if it is divisible by 400. If it is, the code block indented below that statement will be executed, printing the message "is a leap year."

If it is not, the code block indented below the else statement inside the inner if statement will be executed, printing the message "is not a leap year.".

If the year is not divisible by 4, the code block indented below the else statement of the outer if statement will be executed, printing the message "is not a leap year."

Example 4: Checking if a string contains a certain character

In this example, we use the in operator to check if the character char is present in the string string. If it is, the condition char in string is True, and the code block indented below the if statement will be executed, printing the message "The string contains the character" followed by the character itself.

If char is not present in string, the condition is False, and the code block indented below the else statement will be executed, printing the message "The string does not contain the character" followed by the character itself.

Conditional statements (if, else, and elif) are fundamental programming constructs that allow you to control the flow of your program based on conditions that you specify. They provide a way to make decisions in your program and execute different code based on those decisions.

In this article, we have seen several examples of how to use these statements in Python, including checking if a number is even or odd, assigning a letter grade based on a numerical score, checking if a year is a leap year, and checking if a string contains a certain character.

By mastering these statements, you can create more powerful and versatile programs that can handle a wider range of tasks and scenarios.

It is important to keep in mind that proper indentation is crucial when using conditional statements in Python, as it determines which code block is executed based on the condition.

With practice, you will become proficient in using these statements to create more complex and effective Python programs.

Let’s connect on Twitter and Linkedin .

Data Scientist||Machine Learning Engineer|| Data Analyst|| Microsoft Student Learn Ambassador

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

Python One Line Conditional Assignment

Problem : How to perform one-line if conditional assignments in Python?

Example : Say, you start with the following code.

You want to set the value of x to 42 if boo is True , and do nothing otherwise.

Let’s dive into the different ways to accomplish this in Python. We start with an overview:

Exercise : Run the code. Are all outputs the same?

Next, you’ll dive into each of those methods and boost your one-liner superpower !

Method 1: Ternary Operator

The most basic ternary operator x if c else y returns expression x if the Boolean expression c evaluates to True . Otherwise, if the expression c evaluates to False , the ternary operator returns the alternative expression y .

Let’s go back to our example problem! You want to set the value of x to 42 if boo is True , and do nothing otherwise. Here’s how to do this in a single line:

While using the ternary operator works, you may wonder whether it’s possible to avoid the ...else x part for clarity of the code? In the next method, you’ll learn how!

If you need to improve your understanding of the ternary operator, watch the following video:

The Python Ternary Operator -- And a Surprising One-Liner Hack

You can also read the related article:

  • Python One Line Ternary

Method 2: Single-Line If Statement

Like in the previous method, you want to set the value of x to 42 if boo is True , and do nothing otherwise. But you don’t want to have a redundant else branch. How to do this in Python?

The solution to skip the else part of the ternary operator is surprisingly simple— use a standard if statement without else branch and write it into a single line of code :

To learn more about what you can pack into a single line, watch my tutorial video “If-Then-Else in One Line Python” :

If-Then-Else in One Line Python

Method 3: Ternary Tuple Syntax Hack

A shorthand form of the ternary operator is the following tuple syntax .

Syntax : You can use the tuple syntax (x, y)[c] consisting of a tuple (x, y) and a condition c enclosed in a square bracket. Here’s a more intuitive way to represent this tuple syntax.

In fact, the order of the <OnFalse> and <OnTrue> operands is just flipped when compared to the basic ternary operator. First, you have the branch that’s returned if the condition does NOT hold. Second, you run the branch that’s returned if the condition holds.

Clever! The condition boo holds so the return value passed into the x variable is the <OnTrue> branch 42 .

Don’t worry if this confuses you—you’re not alone. You can clarify the tuple syntax once and for all by studying my detailed blog article.

Related Article : Python Ternary — Tuple Syntax Hack

Python One-Liners Book: Master the Single Line First!

Python programmers will improve their computer science skills with these useful one-liners.

Python One-Liners will teach you how to read and write “one-liners”: concise statements of useful functionality packed into a single line of code. You’ll learn how to systematically unpack and understand any line of Python code, and write eloquent, powerfully compressed Python like an expert.

The book’s five chapters cover (1) tips and tricks, (2) regular expressions, (3) machine learning, (4) core data science topics, and (5) useful algorithms.

Detailed explanations of one-liners introduce key computer science concepts and boost your coding and analytical skills . You’ll learn about advanced Python features such as list comprehension , slicing , lambda functions , regular expressions , map and reduce functions, and slice assignments .

You’ll also learn how to:

  • Leverage data structures to solve real-world problems , like using Boolean indexing to find cities with above-average pollution
  • Use NumPy basics such as array , shape , axis , type , broadcasting , advanced indexing , slicing , sorting , searching , aggregating , and statistics
  • Calculate basic statistics of multidimensional data arrays and the K-Means algorithms for unsupervised learning
  • Create more advanced regular expressions using grouping and named groups , negative lookaheads , escaped characters , whitespaces, character sets (and negative characters sets ), and greedy/nongreedy operators
  • Understand a wide range of computer science topics , including anagrams , palindromes , supersets , permutations , factorials , prime numbers , Fibonacci numbers, obfuscation , searching , and algorithmic sorting

By the end of the book, you’ll know how to write Python at its most refined , and create concise, beautiful pieces of “Python art” in merely a single line.

Get your Python One-Liners on Amazon!!

While working as a researcher in distributed systems, Dr. Christian Mayer found his love for teaching computer science students.

To help students reach higher levels of Python success, he founded the programming education website Finxter.com that has taught exponential skills to millions of coders worldwide. He’s the author of the best-selling programming books Python One-Liners (NoStarch 2020), The Art of Clean Code (NoStarch 2022), and The Book of Dash (NoStarch 2022). Chris also coauthored the Coffee Break Python series of self-published books. He’s a computer science enthusiast, freelancer , and owner of one of the top 10 largest Python blogs worldwide.

His passions are writing, reading, and coding. But his greatest passion is to serve aspiring coders through Finxter and help them to boost their skills. You can join his free email academy here.

  • Python »
  • 3.12.3 Documentation »
  • The Python Language Reference »
  • 6. Expressions
  • Theme Auto Light Dark |

6. Expressions ¶

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical analysis. When (one alternative of) a syntax rule has the form

and no semantics are given, the semantics of this form of name are the same as for othername .

6.1. Arithmetic conversions ¶

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a common type”, this means that the operator implementation for built-in types works as follows:

If either argument is a complex number, the other is converted to complex;

otherwise, if either argument is a floating point number, the other is converted to floating point;

otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the ‘%’ operator). Extensions must define their own conversion behavior.

6.2. Atoms ¶

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

6.2.1. Identifiers (Names) ¶

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section Naming and binding for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more underscore characters and does not end in two or more underscores, it is considered a private name of that class. Private names are transformed to a longer form before code is generated for them. The transformation inserts the class name, with leading underscores removed and a single underscore inserted, in front of the name. For example, the identifier __spam occurring in a class named Ham will be transformed to _Ham__spam . This transformation is independent of the syntactical context in which the identifier is used. If the transformed name is extremely long (longer than 255 characters), implementation defined truncation may happen. If the class name consists only of underscores, no transformation is done.

6.2.2. Literals ¶

Python supports string and bytes literals and various numeric literals:

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number) with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals. See section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence) may obtain the same object or a different object with the same value.

6.2.3. Parenthesized forms ¶

A parenthesized form is an optional expression list enclosed in parentheses:

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple, for which parentheses are required — allowing unparenthesized “nothing” in expressions would cause ambiguities and allow common typos to pass uncaught.

6.2.4. Displays for lists, sets and dictionaries ¶

For constructing a list, a set or a dictionary Python provides special syntax called “displays”, each of them in two flavors:

either the container contents are listed explicitly, or

they are computed via a set of looping and filtering instructions, called a comprehension .

Common syntax elements for comprehensions are:

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if clauses. In this case, the elements of the new container are those that would be produced by considering each of the for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time the innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate implicitly nested scope. This ensures that names assigned to in the target list don’t “leak” into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For example: [x*y for x in range(10) for y in range(x, x+10)] .

To ensure the comprehension always results in a container of the appropriate type, yield and yield from expressions are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous iterator . A comprehension in an async def function may consist of either a for or async for clause following the leading expression, may contain additional for or async for clauses, and may also use await expressions. If a comprehension contains either async for clauses or await expressions or other asynchronous comprehensions it is called an asynchronous comprehension . An asynchronous comprehension may suspend the execution of the coroutine function in which it appears. See also PEP 530 .

Added in version 3.6: Asynchronous comprehensions were introduced.

Changed in version 3.8: yield and yield from prohibited in the implicitly nested scope.

Changed in version 3.11: Asynchronous comprehensions are now allowed inside comprehensions in asynchronous functions. Outer comprehensions implicitly become asynchronous.

6.2.5. List displays ¶

A list display is a possibly empty series of expressions enclosed in square brackets:

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into the list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting from the comprehension.

6.2.6. Set displays ¶

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating keys and values:

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting from the comprehension.

An empty set cannot be constructed with {} ; this literal constructs an empty dictionary.

6.2.7. Dictionary displays ¶

A dictionary display is a possibly empty series of dict items (key/value pairs) enclosed in curly braces:

A dictionary display yields a new dictionary object.

If a comma-separated sequence of dict items is given, they are evaluated from left to right to define the entries of the dictionary: each key object is used as a key into the dictionary to store the corresponding value. This means that you can specify the same key multiple times in the dict item list, and the final dictionary’s value for that key will be the last one given.

A double asterisk ** denotes dictionary unpacking . Its operand must be a mapping . Each mapping item is added to the new dictionary. Later values replace values already set by earlier dict items and earlier dictionary unpackings.

Added in version 3.5: Unpacking into dictionary displays, originally proposed by PEP 448 .

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon followed by the usual “for” and “if” clauses. When the comprehension is run, the resulting key and value elements are inserted in the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section The standard type hierarchy . (To summarize, the key type should be hashable , which excludes all mutable objects.) Clashes between duplicate keys are not detected; the last value (textually rightmost in the display) stored for a given key value prevails.

Changed in version 3.8: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was not well-defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before the value, as proposed by PEP 572 .

6.2.8. Generator expressions ¶

A generator expression is a compact generator notation in parentheses:

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is enclosed in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the __next__() method is called for the generator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for clause is immediately evaluated, so that an error produced by it will be emitted at the point where the generator expression is defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter condition in the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For example: (x*y for x in range(10) for y in range(x, x+10)) .

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yield and yield from expressions are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or await expressions it is called an asynchronous generator expression . An asynchronous generator expression returns a new asynchronous generator object, which is an asynchronous iterator (see Asynchronous Iterators ).

Added in version 3.6: Asynchronous generator expressions were introduced.

Changed in version 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async def coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

6.2.9. Yield expressions ¶

The yield expression is used when defining a generator function or an asynchronous generator function and thus can only be used in the body of a function definition. Using a yield expression in a function’s body causes that function to be a generator function, and using it in an async def function’s body causes that coroutine function to be an asynchronous generator function. For example:

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly defined scopes used to implement comprehensions and generator expressions.

Changed in version 3.8: Yield expressions prohibited in the implicitly nested scopes used to implement comprehensions and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section Asynchronous generator functions .

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution of the generator function. The execution starts when one of the generator’s methods is called. At that time, the execution proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to the generator’s caller, or None if expression_list is omitted. By suspended, we mean that all local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any exception handling. When the execution is resumed by calling one of the generator’s methods, the function can proceed exactly as if the yield expression were just another external call. The value of the yield expression after resuming depends on the method which resumed the execution. If __next__() is used (typically via either a for or the next() builtin) then the result is None . Otherwise, if send() is used, then the result will be the value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry point and their execution can be suspended. The only difference is that a generator function cannot control where the execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a try construct. If the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), the generator-iterator’s close() method will be called, allowing any pending finally clauses to execute.

When yield from <expr> is used, the supplied expression must be an iterable. The values produced by iterating that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send() and any exceptions passed in with throw() are passed to the underlying iterator if it has the appropriate methods. If this is not the case, then send() will raise AttributeError or TypeError , while throw() will just raise the passed in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes the value of the yield expression. It can be either set explicitly when raising StopIteration , or automatically when the subiterator is a generator (by returning a value from the subgenerator).

Changed in version 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an assignment statement.

The proposal for adding generators and the yield statement to Python.

The proposal to enhance the API and syntax of generators, making them usable as simple coroutines.

The proposal to introduce the yield_from syntax, making delegation to subgenerators easy.

The proposal that expanded on PEP 492 by adding generator capabilities to coroutine functions.

6.2.9.1. Generator-iterator methods ¶

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError exception.

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator function is resumed with a __next__() method, the current yield expression always evaluates to None . The execution then continues to the next yield expression, where the generator is suspended again, and the value of the expression_list is returned to __next__() ’s caller. If the generator exits without yielding another value, a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next() function.

Resumes the execution and “sends” a value into the generator function. The value argument becomes the result of the current yield expression. The send() method returns the next value yielded by the generator, or raises StopIteration if the generator exits without yielding another value. When send() is called to start the generator, it must be called with None as the argument, because there is no yield expression that could receive the value.

Raises an exception at the point where the generator was paused, and returns the next value yielded by the generator function. If the generator exits without yielding another value, a StopIteration exception is raised. If the generator function does not catch the passed-in exception, or raises a different exception, then that exception propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older versions of Python. The type argument should be an exception class, and value should be an exception instance. If the value is not provided, the type constructor is called to get an instance. If traceback is provided, it is set on the exception, otherwise any existing __traceback__ attribute stored in value may be cleared.

Changed in version 3.12: The second signature (type[, value[, traceback]]) is deprecated and may be removed in a future version of Python.

Raises a GeneratorExit at the point where the generator function was paused. If the generator function then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close returns to its caller. If the generator yields a value, a RuntimeError is raised. If the generator raises any other exception, it is propagated to the caller. close() does nothing if the generator has already exited due to an exception or normal exit.

6.2.9.2. Examples ¶

Here is a simple example that demonstrates the behavior of generators and generator functions:

For examples using yield from , see PEP 380: Syntax for Delegating to a Subgenerator in “What’s New in Python.”

6.2.9.3. Asynchronous generator functions ¶

The presence of a yield expression in a function or method defined using async def further defines the function as an asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous generator object. That object then controls the execution of the generator function. An asynchronous generator object is typically used in an async for statement in a coroutine function analogously to how a generator object would be used in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to the awaiting coroutine. As with a generator, suspension means that all local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another external call. The value of the yield expression after resuming depends on the method which resumed the execution. If __anext__() is used then the result is None . Otherwise, if asend() is used, then the result will be the value passed in to that method.

If an asynchronous generator happens to exit early by break , the caller task being cancelled, or other exceptions, the generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected context–perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator garbage collection hook is called. To prevent this, the caller must explicitly close the async generator by calling aclose() method to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a try construct. However, if an asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), then a yield expression within a try construct could result in a failure to execute pending finally clauses. In this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call the asynchronous generator-iterator’s aclose() method and run the resulting coroutine object, thus allowing any pending finally clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes an asynchronous generator-iterator and presumably calls aclose() and executes the coroutine. This finalizer may be registered by calling sys.set_asyncgen_hooks() . When first iterated over, an asynchronous generator-iterator will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method see the implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py .

The expression yield from <expr> is a syntax error when used in an asynchronous generator function.

6.2.9.4. Asynchronous generator-iterator methods ¶

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution of a generator function.

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last executed yield expression. When an asynchronous generator function is resumed with an __anext__() method, the current yield expression always evaluates to None in the returned awaitable, which when run will continue to the next yield expression. The value of the expression_list of the yield expression is the value of the StopIteration exception raised by the completing coroutine. If the asynchronous generator exits without yielding another value, the awaitable instead raises a StopAsyncIteration exception, signalling that the asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the send() method for a generator, this “sends” a value into the asynchronous generator function, and the value argument becomes the result of the current yield expression. The awaitable returned by the asend() method will return the next value yielded by the generator as the value of the raised StopIteration , or raises StopAsyncIteration if the asynchronous generator exits without yielding another value. When asend() is called to start the asynchronous generator, it must be called with None as the argument, because there is no yield expression that could receive the value.

Returns an awaitable that raises an exception of type type at the point where the asynchronous generator was paused, and returns the next value yielded by the generator function as the value of the raised StopIteration exception. If the asynchronous generator exits without yielding another value, a StopAsyncIteration exception is raised by the awaitable. If the generator function does not catch the passed-in exception, or raises a different exception, then when the awaitable is run that exception propagates to the caller of the awaitable.

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator function at the point where it was paused. If the asynchronous generator function then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise a StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous generator will raise a StopAsyncIteration exception. If the asynchronous generator yields a value, a RuntimeError is raised by the awaitable. If the asynchronous generator raises any other exception, it is propagated to the caller of the awaitable. If the asynchronous generator has already exited due to an exception or normal exit, then further calls to aclose() will return an awaitable that does nothing.

6.3. Primaries ¶

Primaries represent the most tightly bound operations of the language. Their syntax is:

6.3.1. Attribute references ¶

An attribute reference is a primary followed by a period and a name:

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object is then asked to produce the attribute whose name is the identifier. The type and value produced is determined by the object. Multiple evaluations of the same attribute reference may yield different objects.

This production can be customized by overriding the __getattribute__() method or the __getattr__() method. The __getattribute__() method is called first and either returns a value or raises AttributeError if the attribute is not available.

If an AttributeError is raised and the object has a __getattr__() method, that method is called as a fallback.

6.3.2. Subscriptions ¶

The subscription of an instance of a container class will generally select an element from the container. The subscription of a generic class will generally return a GenericAlias object.

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through defining one or both of __getitem__() and __class_getitem__() . When the primary is subscripted, the evaluated result of the expression list will be passed to one of these methods. For more details on when __class_getitem__ is called instead of __getitem__ , see __class_getitem__ versus __getitem__ .

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression list. Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via __getitem__() :

Mappings. If the primary is a mapping , the expression list must evaluate to an object whose value is one of the keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An example of a builtin mapping class is the dict class.

Sequences. If the primary is a sequence , the expression list must evaluate to an int or a slice (as discussed in the following section). Examples of builtin sequence classes include the str , list and tuple classes.

The formal syntax makes no special provision for negative indices in sequences . However, built-in sequences all provide a __getitem__() method that interprets negative indices by adding the length of the sequence to the index so that, for example, x[-1] selects the last item of x . The resulting value must be a nonnegative integer less than the number of items in the sequence, and the subscription selects the item whose index is that value (counting from zero). Since the support for negative indices and slicing occurs in the object’s __getitem__() method, subclasses overriding this method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters . A character is not a separate data type but a string of exactly one character.

6.3.3. Slicings ¶

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or as targets in assignment or del statements. The syntax for a slicing:

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __getitem__() method as normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper slice is a slice object (see section The standard type hierarchy ) whose start , stop and step attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

6.3.4. Calls ¶

A call calls a callable object (e.g., a function ) with a possibly empty series of arguments :

An optional trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects, class objects, methods of class instances, and all objects having a __call__() method are callable). All argument expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None , it fills the slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

CPython implementation detail: An implementation may provide built-in functions whose positional parameters do not have names, even if they are ‘named’ for the purpose of documentation, and which therefore cannot be supplied by keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple() to parse their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable . Elements from these iterables are treated as if they were additional positional arguments. For the call f(x1, x2, *y, x3, x4) , if y evaluates to a sequence y1 , …, yM , this is equivalent to a call with M+4 positional arguments x1 , x2 , y1 , …, yM , x3 , x4 .

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it is processed before the keyword arguments (and any **expression arguments – see below). So:

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this confusion does not often arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping , the contents of which are treated as additional keyword arguments. If a parameter matching a key has already been given a value (by an explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned to the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a Python identifier (e.g. "max-temp °F" is acceptable, although it will not match any formal parameter that could be declared). If there is no match to a formal parameter the key-value pair is collected by the ** parameter, if there is one, or if there is not, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots or as keyword argument names.

Changed in version 3.5: Function calls accept any number of * and ** unpackings, positional arguments may follow iterable unpackings ( * ), and keyword arguments may follow dictionary unpackings ( ** ). Originally proposed by PEP 448 .

A call always returns some value, possibly None , unless it raises an exception. How this value is computed depends on the type of the callable object.

The code block for the function is executed, passing it the argument list. The first thing the code block will do is bind the formal parameters to the arguments; this is described in section Function definitions . When the code block executes a return statement, this specifies the return value of the function call.

The result is up to the interpreter; see Built-in Functions for the descriptions of built-in functions and methods.

A new instance of that class is returned.

The corresponding user-defined function is called, with an argument list that is one longer than the argument list of the call: the instance becomes the first argument.

The class must define a __call__() method; the effect is then the same as if that method was called.

6.4. Await expression ¶

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function .

Added in version 3.5.

6.5. The power operator ¶

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its right. The syntax is:

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this does not constrain the evaluation order for the operands): -1**2 results in -1 .

The power operator has the same semantics as the built-in pow() function, when called with two arguments: it yields its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type, and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case, all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100 , but 10**-2 returns 0.01 .

Raising 0.0 to a negative power results in a ZeroDivisionError . Raising a negative number to a fractional power results in a complex number. (In earlier versions it raised a ValueError .)

This operation can be customized using the special __pow__() method.

6.6. Unary arithmetic and bitwise operations ¶

All unary arithmetic and bitwise operations have the same priority:

The unary - (minus) operator yields the negation of its numeric argument; the operation can be overridden with the __neg__() special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the __pos__() special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is defined as -(x+1) . It only applies to integral numbers or to custom objects that override the __invert__() special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7. Binary arithmetic operations ¶

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators and one for additive operators:

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a common type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition factor yields an empty sequence.

This operation can be customized using the special __mul__() and __rmul__() methods.

The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are first converted to a common type. Division of integers yields a float, while floor division of integers results in an integer; the result is that of mathematical division with the ‘floor’ function applied to the result. Division by zero raises the ZeroDivisionError exception.

This operation can be customized using the special __truediv__() and __floordiv__() methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception. The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.34 .) The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of the result is strictly smaller than the absolute value of the second operand [ 1 ] .

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y) . Floor division and modulo are also connected with the built-in function divmod() : divmod(x, y) == (x//y, x%y) . [ 2 ] .

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to perform old-style string formatting (also known as interpolation). The syntax for string formatting is described in the Python Library Reference, section printf-style String Formatting .

The modulo operation can be customized using the special __mod__() method.

The floor division operator, the modulo operator, and the divmod() function are not defined for complex numbers. Instead, convert to a floating point number using the abs() function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be sequences of the same type. In the former case, the numbers are converted to a common type and then added together. In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__() and __radd__() methods.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a common type.

This operation can be customized using the special __sub__() method.

6.8. Shifting operations ¶

The shifting operations have lower priority than the arithmetic operations:

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits given by the second argument.

This operation can be customized using the special __lshift__() and __rshift__() methods.

A right shift by n bits is defined as floor division by pow(2,n) . A left shift by n bits is defined as multiplication with pow(2,n) .

6.9. Binary bitwise operations ¶

Each of the three bitwise operations has a different priority level:

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom object overriding __and__() or __rand__() special methods.

The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must be a custom object overriding __xor__() or __rxor__() special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a custom object overriding __or__() or __ror__() special methods.

6.10. Comparisons ¶

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic, shifting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional in mathematics:

Comparisons yield boolean values: True or False . Custom rich comparison methods may return non-boolean values. In this case Python will call bool() on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y and y <= z , except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be false).

Formally, if a , b , c , …, y , z are expressions and op1 , op2 , …, opN are comparison operators, then a op1 b op2 c ... y opN z is equivalent to a op1 b and b op2 c and ... y opN z , except that each expression is evaluated at most once.

Note that a op1 b op2 c doesn’t imply any kind of comparison between a and c , so that, e.g., x < y > z is perfectly legal (though perhaps not pretty).

6.10.1. Value comparisons ¶

The operators < , > , == , >= , <= , and != compare the values of two objects. The objects do not need to have the same type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an object is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value. Also, there is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of all its data attributes. Comparison operators implement a particular notion of what the value of an object is. One can think of them as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object , they inherit the default comparison behavior from object . Types can customize their comparison behavior by implementing rich comparison methods like __lt__() , described in Basic customization .

The default behavior for equality comparison ( == and != ) is based on the identity of the objects. Hence, equality comparison of instances with the same identity results in equality, and equality comparison of instances with different identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive (i.e. x is y implies x == y ).

A default order comparison ( < , > , <= , and >= ) is not provided; an attempt raises TypeError . A motivation for this default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be in contrast to what types will need that have a sensible definition of object value and value-based equality. Such types will need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

Numbers of built-in numeric types ( Numeric Types — int, float, complex ) and of the standard library types fractions.Fraction and decimal.Decimal can be compared within and across their types, with the restriction that complex numbers do not support order comparison. Within the limits of the types involved, they compare mathematically (algorithmically) correct without loss of precision.

The not-a-number values float('NaN') and decimal.Decimal('NaN') are special. Any ordered comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number values are not equal to themselves. For example, if x = float('NaN') , 3 < x , x < 3 and x == x are all false, while x != x is true. This behavior is compliant with IEEE 754.

None and NotImplemented are singletons. PEP 8 advises that comparisons for singletons should always be done with is or is not , never the equality operators.

Binary sequences (instances of bytes or bytearray ) can be compared within and across their types. They compare lexicographically using the numeric values of their elements.

Strings (instances of str ) compare lexicographically using the numerical Unicode code points (the result of the built-in function ord() ) of their characters. [ 3 ]

Strings and binary sequences cannot be directly compared.

Sequences (instances of tuple , list , or range ) can be compared only within each of their types, with the restriction that ranges do not support order comparison. Equality comparison across these types results in inequality, and ordering comparison across these types raises TypeError .

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical objects to improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

For two collections to compare equal, they must be of the same type, have the same length, and each pair of corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the type is not the same).

Collections that support order comparison are ordered the same as their first unequal elements (for example, [1,2,x] <= [1,2,y] has the same value as x <= y ). If a corresponding element does not exist, the shorter collection is ordered first (for example, [1,2] < [1,2,3] is true).

Mappings (instances of dict ) compare equal if and only if they have equal (key, value) pairs. Equality comparison of the keys and values enforces reflexivity.

Order comparisons ( < , > , <= , and >= ) raise TypeError .

Sets (instances of set or frozenset ) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total orderings (for example, the two sets {1,2} and {2,3} are not equal, nor subsets of one another, nor supersets of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering (for example, min() , max() , and sorted() produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

Most other built-in types have no comparison methods implemented, so they inherit the default comparison behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:

Equality comparison should be reflexive. In other words, identical objects should compare equal:

x is y implies x == y

Comparison should be symmetric. In other words, the following expressions should have the same result:

x == y and y == x x != y and y != x x < y and y > x x <= y and y >= x

Comparison should be transitive. The following (non-exhaustive) examples illustrate that:

x > y and y > z implies x > z x < y and y <= z implies x < z

Inverse comparison should result in the boolean negation. In other words, the following expressions should have the same result:

x == y and not x != y x < y and not x >= y (for total ordering) x > y and not x <= y (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings). See also the total_ordering() decorator.

The hash() result should be consistent with equality. Objects that are equal should either have the same hash value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following these rules.

6.10.2. Membership test operations ¶

The operators in and not in test for membership. x in s evaluates to True if x is a member of s , and False otherwise. x not in s returns the negation of x in s . All built-in sequences and set types support this as well as dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset, dict, or collections.deque, the expression x in y is equivalent to any(x is e or x == e for e in y) .

For the string and bytes types, x in y is True if and only if x is a substring of y . An equivalent test is y.find(x) != -1 . Empty strings are always considered to be a substring of any other string, so "" in "abc" will return True .

For user-defined classes which define the __contains__() method, x in y returns True if y.__contains__(x) returns a true value, and False otherwise.

For user-defined classes which do not define __contains__() but do define __iter__() , x in y is True if some value z , for which the expression x is z or x == z is true, is produced while iterating over y . If an exception is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__() , x in y is True if and only if there is a non-negative integer index i such that x is y[i] or x == y[i] , and no lower integer index raises the IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not in is defined to have the inverse truth value of in .

6.10.3. Identity comparisons ¶

The operators is and is not test for an object’s identity: x is y is true if and only if x and y are the same object. An Object’s identity is determined using the id() function. x is not y yields the inverse truth value. [ 4 ]

6.11. Boolean operations ¶

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values are interpreted as false: False , None , numeric zero of all types, and empty strings and containers (including strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects can customize their truth value by providing a __bool__() method.

The operator not yields True if its argument is false, False otherwise.

The expression x and y first evaluates x ; if x is false, its value is returned; otherwise, y is evaluated and the resulting value is returned.

The expression x or y first evaluates x ; if x is true, its value is returned; otherwise, y is evaluated and the resulting value is returned.

Note that neither and nor or restrict the value and type they return to False and True , but rather return the last evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty, the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a boolean value regardless of the type of its argument (for example, not 'foo' produces False rather than '' .)

6.12. Assignment expressions ¶

An assignment expression (sometimes also called a “named expression” or “walrus”) assigns an expression to an identifier , while also returning the value of the expression .

One common use case is when handling matched regular expressions:

Or, when processing a file stream in chunks:

Assignment expressions must be surrounded by parentheses when used as expression statements and when used as sub-expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and in assert , with , and assignment statements. In all other places where they can be used, parentheses are not required, including in if and while statements.

Added in version 3.8: See PEP 572 for more details about assignment expressions.

6.13. Conditional expressions ¶

Conditional expressions (sometimes called a “ternary operator”) have the lowest priority of all Python operations.

The expression x if C else y first evaluates the condition, C rather than x . If C is true, x is evaluated and its value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14. Lambdas ¶

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression lambda parameters: expression yields a function object. The unnamed object behaves like a function object defined with:

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions cannot contain statements or annotations.

6.15. Expression lists ¶

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length of the tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking . Its operand must be an iterable . The iterable is expanded into a sequence of items, which are included in the new tuple, list, or set, at the site of the unpacking.

Added in version 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448 .

A trailing comma is required only to create a one-item tuple, such as 1, ; it is optional in all other cases. A single expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create an empty tuple, use an empty pair of parentheses: () .)

6.16. Evaluation order ¶

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

6.17. Operator precedence ¶

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given, operators are binary. Operators in the same box group left to right (except for exponentiation and conditional expressions, which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right chaining feature as described in the Comparisons section.

Table of Contents

  • 6.1. Arithmetic conversions
  • 6.2.1. Identifiers (Names)
  • 6.2.2. Literals
  • 6.2.3. Parenthesized forms
  • 6.2.4. Displays for lists, sets and dictionaries
  • 6.2.5. List displays
  • 6.2.6. Set displays
  • 6.2.7. Dictionary displays
  • 6.2.8. Generator expressions
  • 6.2.9.1. Generator-iterator methods
  • 6.2.9.2. Examples
  • 6.2.9.3. Asynchronous generator functions
  • 6.2.9.4. Asynchronous generator-iterator methods
  • 6.3.1. Attribute references
  • 6.3.2. Subscriptions
  • 6.3.3. Slicings
  • 6.3.4. Calls
  • 6.4. Await expression
  • 6.5. The power operator
  • 6.6. Unary arithmetic and bitwise operations
  • 6.7. Binary arithmetic operations
  • 6.8. Shifting operations
  • 6.9. Binary bitwise operations
  • 6.10.1. Value comparisons
  • 6.10.2. Membership test operations
  • 6.10.3. Identity comparisons
  • 6.11. Boolean operations
  • 6.12. Assignment expressions
  • 6.13. Conditional expressions
  • 6.14. Lambdas
  • 6.15. Expression lists
  • 6.16. Evaluation order
  • 6.17. Operator precedence

Previous topic

5. The import system

7. Simple statements

  • Report a Bug
  • Show Source
  • Contributors

Basic Statements in Python

Table of contents, what is a statement in python, statement set, multi-line statements, simple statements, expression statements, the assert statement, the try statement.

Statements in Python

In Python, statements are instructions or commands that you write to perform specific actions or tasks. They are the building blocks of a Python program.

A statement is a line of code that performs a specific action. It is the smallest unit of code that can be executed by the Python interpreter.

Assignment Statement

In this example, the value 10 is assigned to the variable x using the assignment statement.

Conditional Statement

In this example, the if-else statement is used to check the value of x and print a corresponding message.

By using statements, programmers can instruct the computer to perform a variety of tasks, from simple arithmetic operations to complex decision-making processes. Proper use of statements is crucial to writing efficient and effective Python code.

Here's a table summarizing various types of statements in Python:

Please note that this table provides a brief overview of each statement type, and there may be additional details and variations for each statement.

Multi-line statements are a convenient way to write long code in Python without making it cluttered. They allow you to write several lines of code as a single statement, making it easier for developers to read and understand the code. Here are two examples of multi-line statements in Python:

  • Using backslash:
  • Using parentheses:

Simple statements are the smallest unit of execution in Python programming language and they do not contain any logical or conditional expressions. They are usually composed of a single line of code and can perform basic operations such as assigning values to variables , printing out values, or calling functions .

Examples of simple statements in Python:

Simple statements are essential to programming in Python and are often used in combination with more complex statements to create robust programs and applications.

Expression statements in Python are lines of code that evaluate and produce a value. They are used to assign values to variables, call functions, and perform other operations that produce a result.

In this example, we assign the value 5 to the variable x , then add 3 to x and assign the result ( 8 ) to the variable y . Finally, we print the value of y .

In this example, we define a function square that takes one argument ( x ) and returns its square. We then call the function with the argument 5 and assign the result ( 25 ) to the variable result . Finally, we print the value of result .

Overall, expression statements are an essential part of Python programming and allow for the execution of mathematical and computational operations.

The assert statement in Python is used to test conditions and trigger an error if the condition is not met. It is often used for debugging and testing purposes.

Where condition is the expression that is tested, and message is the optional error message that is displayed when the condition is not met.

In this example, the assert statement tests whether x is equal to 5 . If the condition is met, the statement has no effect. If the condition is not met, an error will be raised with the message x should be 5 .

In this example, the assert statement tests whether y is not equal to 0 before performing the division. If the condition is met, the division proceeds as normal. If the condition is not met, an error will be raised with the message Cannot divide by zero .

Overall, assert statements are a useful tool in Python for debugging and testing, as they can help catch errors early on. They are also easily disabled in production code to avoid any unnecessary overhead.

The try statement in Python is used to catch exceptions that may occur during the execution of a block of code. It ensures that even when an error occurs, the code does not stop running.

Examples of Error Processing

Dive deep into the topic.

  • Match Statements
  • Operators in Python Statements
  • The IF Statement

Contribute with us!

Do not hesitate to contribute to Python tutorials on GitHub: create a fork, update content and issue a pull request.

Profile picture for user AliaksandrSumich

Conditional Assignment Operator in Python

  • Python How-To's
  • Conditional Assignment Operator in …

Meaning of ||= Operator in Ruby

Implement ruby’s ||= conditional assignment operator in python using the try...except statement, implement ruby’s ||= conditional assignment operator in python using local and global variables.

Conditional Assignment Operator in Python

There isn’t any exact equivalent of Ruby’s ||= operator in Python. However, we can use the try...except method and concepts of local and global variables to emulate Ruby’s conditional assignment operator ||= in Python.

The basic meaning of this operator is to assign the value of the variable y to variable x if variable x is undefined or is falsy value, otherwise no assignment operation is performed.

But this operator is much more complex and confusing than other simpler conditional operators like += , -= because whenever any variable is encountered as undefined, the console throws out NameError .

a+=b evaluates to a=a+b .

a||=b looks as a=a||b but actually behaves as a||a=b .

We use try...except to catch and handle errors. Whenever the try except block runs, at first, the code lying within the try block executes. If the block of code within the try block successfully executes, then the except block is ignored; otherwise, the except block code will be executed, and the error is handled. Ruby’s ||= operator can roughly be translated in Python’s try-catch method as :

Here, if the variable x is defined, the try block will execute smoothly with no NameError exception. Hence, no assignment operation is performed. If x is not defined, the try block will generate NameError , then the except block gets executed, and variable x is assigned to 10 .

The scope of local variables is confined within a specific code scope, whereas global variables have their scope defined in the entire code space.

All the local variables in a particular scope are available as keys of the locals dictionary in that particular scope. All the global variables are stored as keys of the globals dictionary. We can access those variables whenever necessary using the locals and the globals dictionary.

We can check if a variable exists in any of the dictionaries and set its value only if it does not exist to translate Ruby’s ||= conditional assignment operator in Python.

Here, if the variable x is present in either global or local scope, we don’t perform any assignment operation; otherwise, we assign the value of x to 10 . It is similar to x||=10 in Ruby.

Related Article - Python Operator

  • Python Bitwise NOT
  • How to Unpack Operator ** in Python
  • How to Overload Operator in Python
  • Python Annotation ->
  • The Walrus Operator := in Python

Datagy logo

  • Learn Python
  • Python Lists
  • Python Dictionaries
  • Python Strings
  • Python Functions
  • Learn Pandas & NumPy
  • Pandas Tutorials
  • Numpy Tutorials
  • Learn Data Visualization
  • Python Seaborn
  • Python Matplotlib

Inline If in Python: The Ternary Operator in Python

  • September 16, 2021 December 20, 2022

Inline If Python Cover Image

In this tutorial, you’ll learn how to create inline if statements in Python. This is often known as the Python ternary operator, which allows you to execute conditional if statements in a single line, allowing statements to take up less space and often be written in my easy-to-understand syntax! Let’s take a look at what you’ll learn.

The Quick Answer: Use the Python Ternary Operator

Quick Answer - Inline If Python

Table of Contents

What is the Python Ternary Operator?

A ternary operator is an inline statement that evaluates a condition and returns one of two outputs. It’s an operator that’s often used in many programming languages, including Python, as well as math. The Python ternary operator has been around since Python 2.5, despite being delayed multiple times.

How Inline If Python Works

The syntax of the Python ternary operator is a little different than that of other languages. Let’s take a look at what it looks like:

Now let’s take a look at how you can actually write an inline if statement in Python.

How Do you Write an Inline If Statement in Python?

Before we dive into writing an inline if statement in Python, let’s take a look at how if statements actually work in Python. With an if statement you must include an if , but you can also choose to include an else statement, as well as one more of else-ifs, which in Python are written as elif .

The traditional Python if statement looks like this:

This can be a little cumbersome to write, especially if you conditions are very simple. Because of this, inline if statements in Python can be really helpful to help you write your code faster.

Let’s take a look at how we can accomplish this in Python:

This is significantly easier to write. Let’s break this down a little bit:

  • We assign a value to x , which will be evaluated
  • We declare a variable, y , which we assign to the value of 10, if x is True. Otherwise, we assign it a value of 20.

We can see how this is written out in a much more plain language than a for-loop that may require multiple lines, thereby wasting space.

Tip! This is quite similar to how you’d written a list comprehension. If you want to learn more about Python List Comprehensions, check out my in-depth tutorial here . If you want to learn more about Python for-loops, check out my in-depth guide here .

Now that you know how to write a basic inline if statement in Python, let’s see how you can simplify it even further by omitting the else statement.

How To Write an Inline If Statement Without an Else Statement

Now that you know how to write an inline if statement in Python with an else clause, let’s take a look at how we can do this in Python.

Before we do this, let’s see how we can do this with a traditional if statement in Python

You can see that this still requires you to write two lines. But we know better – we can easily cut this down to a single line. Let’s get started!

We can see here that really what this accomplishes is remove the line break between the if line and the code it executes.

Now let’s take a look at how we can even include an elif clause in our inline if statements in Python!

Check out some other Python tutorials on datagy.io, including our complete guide to styling Pandas and our comprehensive overview of Pivot Tables in Pandas !

How to Write an Inline If Statement With an Elif Statement

Including an else-if, or elif , in your Python inline if statement is a little less intuitive. But it’s definitely doable! So let’s get started. Let’s imagine we want to write this if-statement:

Let’s see how we can easily turn this into an inline if statement in Python:

This is a bit different than what we’ve seen so far, so let’s break it down a bit:

  • First, we evaluate is x == 1. If that’s true, the conditions end and y = 10.
  • Otherwise, we create another condition in brackets
  • First we check if x == 20, and if that’s true, then y = 20. Note that we did not repeated y= here.
  • Finally, if neither of the other decisions are true, we assign 30 to y

This is definitely a bit more complex to read, so you may be better off creating a traditional if statement.

In this post, you learned how to create inline if statement in Python! You learned about the Python ternary operator and how it works. You also learned how to create inline if statements with else statements, without else statements, as well as with else if statements.

To learn more about Python ternary operators, check out the official documentation here .

Nik Piepenbreier

Nik is the author of datagy.io and has over a decade of experience working with data analytics, data science, and Python. He specializes in teaching developers how to use Python for data science using hands-on tutorials. View Author posts

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 572 – Assignment Expressions

The importance of real code, exceptional cases, scope of the target, relative precedence of :=, change to evaluation order, differences between assignment expressions and assignment statements, specification changes during implementation, _pydecimal.py, datetime.py, sysconfig.py, simplifying list comprehensions, capturing condition values, changing the scope rules for comprehensions, alternative spellings, special-casing conditional statements, special-casing comprehensions, lowering operator precedence, allowing commas to the right, always requiring parentheses, why not just turn existing assignment into an expression, with assignment expressions, why bother with assignment statements, why not use a sublocal scope and prevent namespace pollution, style guide recommendations, acknowledgements, a numeric example, appendix b: rough code translations for comprehensions, appendix c: no changes to scope semantics.

This is a proposal for creating a way to assign to variables within an expression using the notation NAME := expr .

As part of this change, there is also an update to dictionary comprehension evaluation order to ensure key expressions are executed before value expressions (allowing the key to be bound to a name and then re-used as part of calculating the corresponding value).

During discussion of this PEP, the operator became informally known as “the walrus operator”. The construct’s formal name is “Assignment Expressions” (as per the PEP title), but they may also be referred to as “Named Expressions” (e.g. the CPython reference implementation uses that name internally).

Naming the result of an expression is an important part of programming, allowing a descriptive name to be used in place of a longer expression, and permitting reuse. Currently, this feature is available only in statement form, making it unavailable in list comprehensions and other expression contexts.

Additionally, naming sub-parts of a large expression can assist an interactive debugger, providing useful display hooks and partial results. Without a way to capture sub-expressions inline, this would require refactoring of the original code; with assignment expressions, this merely requires the insertion of a few name := markers. Removing the need to refactor reduces the likelihood that the code be inadvertently changed as part of debugging (a common cause of Heisenbugs), and is easier to dictate to another programmer.

During the development of this PEP many people (supporters and critics both) have had a tendency to focus on toy examples on the one hand, and on overly complex examples on the other.

The danger of toy examples is twofold: they are often too abstract to make anyone go “ooh, that’s compelling”, and they are easily refuted with “I would never write it that way anyway”.

The danger of overly complex examples is that they provide a convenient strawman for critics of the proposal to shoot down (“that’s obfuscated”).

Yet there is some use for both extremely simple and extremely complex examples: they are helpful to clarify the intended semantics. Therefore, there will be some of each below.

However, in order to be compelling , examples should be rooted in real code, i.e. code that was written without any thought of this PEP, as part of a useful application, however large or small. Tim Peters has been extremely helpful by going over his own personal code repository and picking examples of code he had written that (in his view) would have been clearer if rewritten with (sparing) use of assignment expressions. His conclusion: the current proposal would have allowed a modest but clear improvement in quite a few bits of code.

Another use of real code is to observe indirectly how much value programmers place on compactness. Guido van Rossum searched through a Dropbox code base and discovered some evidence that programmers value writing fewer lines over shorter lines.

Case in point: Guido found several examples where a programmer repeated a subexpression, slowing down the program, in order to save one line of code, e.g. instead of writing:

they would write:

Another example illustrates that programmers sometimes do more work to save an extra level of indentation:

This code tries to match pattern2 even if pattern1 has a match (in which case the match on pattern2 is never used). The more efficient rewrite would have been:

Syntax and semantics

In most contexts where arbitrary Python expressions can be used, a named expression can appear. This is of the form NAME := expr where expr is any valid Python expression other than an unparenthesized tuple, and NAME is an identifier.

The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value:

There are a few places where assignment expressions are not allowed, in order to avoid ambiguities or user confusion:

This rule is included to simplify the choice for the user between an assignment statement and an assignment expression – there is no syntactic position where both are valid.

Again, this rule is included to avoid two visually similar ways of saying the same thing.

This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

This rule is included to discourage side effects in a position whose exact semantics are already confusing to many users (cf. the common style recommendation against mutable default values), and also to echo the similar prohibition in calls (the previous bullet).

The reasoning here is similar to the two previous cases; this ungrouped assortment of symbols and operators composed of : and = is hard to read correctly.

This allows lambda to always bind less tightly than := ; having a name binding at the top level inside a lambda function is unlikely to be of value, as there is no way to make use of it. In cases where the name will be used more than once, the expression is likely to need parenthesizing anyway, so this prohibition will rarely affect code.

This shows that what looks like an assignment operator in an f-string is not always an assignment operator. The f-string parser uses : to indicate formatting options. To preserve backwards compatibility, assignment operator usage inside of f-strings must be parenthesized. As noted above, this usage of the assignment operator is not recommended.

An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as a scope for this purpose.

There is one special case: an assignment expression occurring in a list, set or dict comprehension or in a generator expression (below collectively referred to as “comprehensions”) binds the target in the containing scope, honoring a nonlocal or global declaration for the target in that scope, if one exists. For the purpose of this rule the containing scope of a nested comprehension is the scope that contains the outermost comprehension. A lambda counts as a containing scope.

The motivation for this special case is twofold. First, it allows us to conveniently capture a “witness” for an any() expression, or a counterexample for all() , for example:

Second, it allows a compact way of updating mutable state from a comprehension, for example:

However, an assignment expression target name cannot be the same as a for -target name appearing in any comprehension containing the assignment expression. The latter names are local to the comprehension in which they appear, so it would be contradictory for a contained use of the same name to refer to the scope containing the outermost comprehension instead.

For example, [i := i+1 for i in range(5)] is invalid: the for i part establishes that i is local to the comprehension, but the i := part insists that i is not local to the comprehension. The same reason makes these examples invalid too:

While it’s technically possible to assign consistent semantics to these cases, it’s difficult to determine whether those semantics actually make sense in the absence of real use cases. Accordingly, the reference implementation [1] will ensure that such cases raise SyntaxError , rather than executing with implementation defined behaviour.

This restriction applies even if the assignment expression is never executed:

For the comprehension body (the part before the first “for” keyword) and the filter expression (the part after “if” and before any nested “for”), this restriction applies solely to target names that are also used as iteration variables in the comprehension. Lambda expressions appearing in these positions introduce a new explicit function scope, and hence may use assignment expressions with no additional restrictions.

Due to design constraints in the reference implementation (the symbol table analyser cannot easily detect when names are re-used between the leftmost comprehension iterable expression and the rest of the comprehension), named expressions are disallowed entirely as part of comprehension iterable expressions (the part after each “in”, and before any subsequent “if” or “for” keyword):

A further exception applies when an assignment expression occurs in a comprehension whose containing scope is a class scope. If the rules above were to result in the target being assigned in that class’s scope, the assignment expression is expressly invalid. This case also raises SyntaxError :

(The reason for the latter exception is the implicit function scope created for comprehensions – there is currently no runtime mechanism for a function to refer to a variable in the containing class scope, and we do not want to add such a mechanism. If this issue ever gets resolved this special case may be removed from the specification of assignment expressions. Note that the problem already exists for using a variable defined in the class scope from a comprehension.)

See Appendix B for some examples of how the rules for targets in comprehensions translate to equivalent code.

The := operator groups more tightly than a comma in all syntactic positions where it is legal, but less tightly than all other operators, including or , and , not , and conditional expressions ( A if C else B ). As follows from section “Exceptional cases” above, it is never allowed at the same level as = . In case a different grouping is desired, parentheses should be used.

The := operator may be used directly in a positional function call argument; however it is invalid directly in a keyword argument.

Some examples to clarify what’s technically valid or invalid:

Most of the “valid” examples above are not recommended, since human readers of Python source code who are quickly glancing at some code may miss the distinction. But simple cases are not objectionable:

This PEP recommends always putting spaces around := , similar to PEP 8 ’s recommendation for = when used for assignment, whereas the latter disallows spaces around = used for keyword arguments.)

In order to have precisely defined semantics, the proposal requires evaluation order to be well-defined. This is technically not a new requirement, as function calls may already have side effects. Python already has a rule that subexpressions are generally evaluated from left to right. However, assignment expressions make these side effects more visible, and we propose a single change to the current evaluation order:

  • In a dict comprehension {X: Y for ...} , Y is currently evaluated before X . We propose to change this so that X is evaluated before Y . (In a dict display like {X: Y} this is already the case, and also in dict((X, Y) for ...) which should clearly be equivalent to the dict comprehension.)

Most importantly, since := is an expression, it can be used in contexts where statements are illegal, including lambda functions and comprehensions.

Conversely, assignment expressions don’t support the advanced features found in assignment statements:

  • Multiple targets are not directly supported: x = y = z = 0 # Equivalent: (z := (y := (x := 0)))
  • Single assignment targets other than a single NAME are not supported: # No equivalent a [ i ] = x self . rest = []
  • Priority around commas is different: x = 1 , 2 # Sets x to (1, 2) ( x := 1 , 2 ) # Sets x to 1
  • Iterable packing and unpacking (both regular or extended forms) are not supported: # Equivalent needs extra parentheses loc = x , y # Use (loc := (x, y)) info = name , phone , * rest # Use (info := (name, phone, *rest)) # No equivalent px , py , pz = position name , phone , email , * other_info = contact
  • Inline type annotations are not supported: # Closest equivalent is "p: Optional[int]" as a separate declaration p : Optional [ int ] = None
  • Augmented assignment is not supported: total += tax # Equivalent: (total := total + tax)

The following changes have been made based on implementation experience and additional review after the PEP was first accepted and before Python 3.8 was released:

  • for consistency with other similar exceptions, and to avoid locking in an exception name that is not necessarily going to improve clarity for end users, the originally proposed TargetScopeError subclass of SyntaxError was dropped in favour of just raising SyntaxError directly. [3]
  • due to a limitation in CPython’s symbol table analysis process, the reference implementation raises SyntaxError for all uses of named expressions inside comprehension iterable expressions, rather than only raising them when the named expression target conflicts with one of the iteration variables in the comprehension. This could be revisited given sufficiently compelling examples, but the extra complexity needed to implement the more selective restriction doesn’t seem worthwhile for purely hypothetical use cases.

Examples from the Python standard library

env_base is only used on these lines, putting its assignment on the if moves it as the “header” of the block.

  • Current: env_base = os . environ . get ( "PYTHONUSERBASE" , None ) if env_base : return env_base
  • Improved: if env_base := os . environ . get ( "PYTHONUSERBASE" , None ): return env_base

Avoid nested if and remove one indentation level.

  • Current: if self . _is_special : ans = self . _check_nans ( context = context ) if ans : return ans
  • Improved: if self . _is_special and ( ans := self . _check_nans ( context = context )): return ans

Code looks more regular and avoid multiple nested if. (See Appendix A for the origin of this example.)

  • Current: reductor = dispatch_table . get ( cls ) if reductor : rv = reductor ( x ) else : reductor = getattr ( x , "__reduce_ex__" , None ) if reductor : rv = reductor ( 4 ) else : reductor = getattr ( x , "__reduce__" , None ) if reductor : rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )
  • Improved: if reductor := dispatch_table . get ( cls ): rv = reductor ( x ) elif reductor := getattr ( x , "__reduce_ex__" , None ): rv = reductor ( 4 ) elif reductor := getattr ( x , "__reduce__" , None ): rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )

tz is only used for s += tz , moving its assignment inside the if helps to show its scope.

  • Current: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) tz = self . _tzstr () if tz : s += tz return s
  • Improved: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) if tz := self . _tzstr (): s += tz return s

Calling fp.readline() in the while condition and calling .match() on the if lines make the code more compact without making it harder to understand.

  • Current: while True : line = fp . readline () if not line : break m = define_rx . match ( line ) if m : n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v else : m = undef_rx . match ( line ) if m : vars [ m . group ( 1 )] = 0
  • Improved: while line := fp . readline (): if m := define_rx . match ( line ): n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v elif m := undef_rx . match ( line ): vars [ m . group ( 1 )] = 0

A list comprehension can map and filter efficiently by capturing the condition:

Similarly, a subexpression can be reused within the main expression, by giving it a name on first use:

Note that in both cases the variable y is bound in the containing scope (i.e. at the same level as results or stuff ).

Assignment expressions can be used to good effect in the header of an if or while statement:

Particularly with the while loop, this can remove the need to have an infinite loop, an assignment, and a condition. It also creates a smooth parallel between a loop which simply uses a function call as its condition, and one which uses that as its condition but also uses the actual value.

An example from the low-level UNIX world:

Rejected alternative proposals

Proposals broadly similar to this one have come up frequently on python-ideas. Below are a number of alternative syntaxes, some of them specific to comprehensions, which have been rejected in favour of the one given above.

A previous version of this PEP proposed subtle changes to the scope rules for comprehensions, to make them more usable in class scope and to unify the scope of the “outermost iterable” and the rest of the comprehension. However, this part of the proposal would have caused backwards incompatibilities, and has been withdrawn so the PEP can focus on assignment expressions.

Broadly the same semantics as the current proposal, but spelled differently.

Since EXPR as NAME already has meaning in import , except and with statements (with different semantics), this would create unnecessary confusion or require special-casing (e.g. to forbid assignment within the headers of these statements).

(Note that with EXPR as VAR does not simply assign the value of EXPR to VAR – it calls EXPR.__enter__() and assigns the result of that to VAR .)

Additional reasons to prefer := over this spelling include:

  • In if f(x) as y the assignment target doesn’t jump out at you – it just reads like if f x blah blah and it is too similar visually to if f(x) and y .
  • import foo as bar
  • except Exc as var
  • with ctxmgr() as var

To the contrary, the assignment expression does not belong to the if or while that starts the line, and we intentionally allow assignment expressions in other contexts as well.

  • NAME = EXPR
  • if NAME := EXPR

reinforces the visual recognition of assignment expressions.

This syntax is inspired by languages such as R and Haskell, and some programmable calculators. (Note that a left-facing arrow y <- f(x) is not possible in Python, as it would be interpreted as less-than and unary minus.) This syntax has a slight advantage over ‘as’ in that it does not conflict with with , except and import , but otherwise is equivalent. But it is entirely unrelated to Python’s other use of -> (function return type annotations), and compared to := (which dates back to Algol-58) it has a much weaker tradition.

This has the advantage that leaked usage can be readily detected, removing some forms of syntactic ambiguity. However, this would be the only place in Python where a variable’s scope is encoded into its name, making refactoring harder.

Execution order is inverted (the indented body is performed first, followed by the “header”). This requires a new keyword, unless an existing keyword is repurposed (most likely with: ). See PEP 3150 for prior discussion on this subject (with the proposed keyword being given: ).

This syntax has fewer conflicts than as does (conflicting only with the raise Exc from Exc notation), but is otherwise comparable to it. Instead of paralleling with expr as target: (which can be useful but can also be confusing), this has no parallels, but is evocative.

One of the most popular use-cases is if and while statements. Instead of a more general solution, this proposal enhances the syntax of these two statements to add a means of capturing the compared value:

This works beautifully if and ONLY if the desired condition is based on the truthiness of the captured value. It is thus effective for specific use-cases (regex matches, socket reads that return '' when done), and completely useless in more complicated cases (e.g. where the condition is f(x) < 0 and you want to capture the value of f(x) ). It also has no benefit to list comprehensions.

Advantages: No syntactic ambiguities. Disadvantages: Answers only a fraction of possible use-cases, even in if / while statements.

Another common use-case is comprehensions (list/set/dict, and genexps). As above, proposals have been made for comprehension-specific solutions.

This brings the subexpression to a location in between the ‘for’ loop and the expression. It introduces an additional language keyword, which creates conflicts. Of the three, where reads the most cleanly, but also has the greatest potential for conflict (e.g. SQLAlchemy and numpy have where methods, as does tkinter.dnd.Icon in the standard library).

As above, but reusing the with keyword. Doesn’t read too badly, and needs no additional language keyword. Is restricted to comprehensions, though, and cannot as easily be transformed into “longhand” for-loop syntax. Has the C problem that an equals sign in an expression can now create a name binding, rather than performing a comparison. Would raise the question of why “with NAME = EXPR:” cannot be used as a statement on its own.

As per option 2, but using as rather than an equals sign. Aligns syntactically with other uses of as for name binding, but a simple transformation to for-loop longhand would create drastically different semantics; the meaning of with inside a comprehension would be completely different from the meaning as a stand-alone statement, while retaining identical syntax.

Regardless of the spelling chosen, this introduces a stark difference between comprehensions and the equivalent unrolled long-hand form of the loop. It is no longer possible to unwrap the loop into statement form without reworking any name bindings. The only keyword that can be repurposed to this task is with , thus giving it sneakily different semantics in a comprehension than in a statement; alternatively, a new keyword is needed, with all the costs therein.

There are two logical precedences for the := operator. Either it should bind as loosely as possible, as does statement-assignment; or it should bind more tightly than comparison operators. Placing its precedence between the comparison and arithmetic operators (to be precise: just lower than bitwise OR) allows most uses inside while and if conditions to be spelled without parentheses, as it is most likely that you wish to capture the value of something, then perform a comparison on it:

Once find() returns -1, the loop terminates. If := binds as loosely as = does, this would capture the result of the comparison (generally either True or False ), which is less useful.

While this behaviour would be convenient in many situations, it is also harder to explain than “the := operator behaves just like the assignment statement”, and as such, the precedence for := has been made as close as possible to that of = (with the exception that it binds tighter than comma).

Some critics have claimed that the assignment expressions should allow unparenthesized tuples on the right, so that these two would be equivalent:

(With the current version of the proposal, the latter would be equivalent to ((point := x), y) .)

However, adopting this stance would logically lead to the conclusion that when used in a function call, assignment expressions also bind less tight than comma, so we’d have the following confusing equivalence:

The less confusing option is to make := bind more tightly than comma.

It’s been proposed to just always require parentheses around an assignment expression. This would resolve many ambiguities, and indeed parentheses will frequently be needed to extract the desired subexpression. But in the following cases the extra parentheses feel redundant:

Frequently Raised Objections

C and its derivatives define the = operator as an expression, rather than a statement as is Python’s way. This allows assignments in more contexts, including contexts where comparisons are more common. The syntactic similarity between if (x == y) and if (x = y) belies their drastically different semantics. Thus this proposal uses := to clarify the distinction.

The two forms have different flexibilities. The := operator can be used inside a larger expression; the = statement can be augmented to += and its friends, can be chained, and can assign to attributes and subscripts.

Previous revisions of this proposal involved sublocal scope (restricted to a single statement), preventing name leakage and namespace pollution. While a definite advantage in a number of situations, this increases complexity in many others, and the costs are not justified by the benefits. In the interests of language simplicity, the name bindings created here are exactly equivalent to any other name bindings, including that usage at class or module scope will create externally-visible names. This is no different from for loops or other constructs, and can be solved the same way: del the name once it is no longer needed, or prefix it with an underscore.

(The author wishes to thank Guido van Rossum and Christoph Groth for their suggestions to move the proposal in this direction. [2] )

As expression assignments can sometimes be used equivalently to statement assignments, the question of which should be preferred will arise. For the benefit of style guides such as PEP 8 , two recommendations are suggested.

  • If either assignment statements or assignment expressions can be used, prefer statements; they are a clear declaration of intent.
  • If using assignment expressions would lead to ambiguity about execution order, restructure it to use statements instead.

The authors wish to thank Alyssa Coghlan and Steven D’Aprano for their considerable contributions to this proposal, and members of the core-mentorship mailing list for assistance with implementation.

Appendix A: Tim Peters’s findings

Here’s a brief essay Tim Peters wrote on the topic.

I dislike “busy” lines of code, and also dislike putting conceptually unrelated logic on a single line. So, for example, instead of:

instead. So I suspected I’d find few places I’d want to use assignment expressions. I didn’t even consider them for lines already stretching halfway across the screen. In other cases, “unrelated” ruled:

is a vast improvement over the briefer:

The original two statements are doing entirely different conceptual things, and slamming them together is conceptually insane.

In other cases, combining related logic made it harder to understand, such as rewriting:

as the briefer:

The while test there is too subtle, crucially relying on strict left-to-right evaluation in a non-short-circuiting or method-chaining context. My brain isn’t wired that way.

But cases like that were rare. Name binding is very frequent, and “sparse is better than dense” does not mean “almost empty is better than sparse”. For example, I have many functions that return None or 0 to communicate “I have nothing useful to return in this case, but since that’s expected often I’m not going to annoy you with an exception”. This is essentially the same as regular expression search functions returning None when there is no match. So there was lots of code of the form:

I find that clearer, and certainly a bit less typing and pattern-matching reading, as:

It’s also nice to trade away a small amount of horizontal whitespace to get another _line_ of surrounding code on screen. I didn’t give much weight to this at first, but it was so very frequent it added up, and I soon enough became annoyed that I couldn’t actually run the briefer code. That surprised me!

There are other cases where assignment expressions really shine. Rather than pick another from my code, Kirill Balunov gave a lovely example from the standard library’s copy() function in copy.py :

The ever-increasing indentation is semantically misleading: the logic is conceptually flat, “the first test that succeeds wins”:

Using easy assignment expressions allows the visual structure of the code to emphasize the conceptual flatness of the logic; ever-increasing indentation obscured it.

A smaller example from my code delighted me, both allowing to put inherently related logic in a single line, and allowing to remove an annoying “artificial” indentation level:

That if is about as long as I want my lines to get, but remains easy to follow.

So, in all, in most lines binding a name, I wouldn’t use assignment expressions, but because that construct is so very frequent, that leaves many places I would. In most of the latter, I found a small win that adds up due to how often it occurs, and in the rest I found a moderate to major win. I’d certainly use it more often than ternary if , but significantly less often than augmented assignment.

I have another example that quite impressed me at the time.

Where all variables are positive integers, and a is at least as large as the n’th root of x, this algorithm returns the floor of the n’th root of x (and roughly doubling the number of accurate bits per iteration):

It’s not obvious why that works, but is no more obvious in the “loop and a half” form. It’s hard to prove correctness without building on the right insight (the “arithmetic mean - geometric mean inequality”), and knowing some non-trivial things about how nested floor functions behave. That is, the challenges are in the math, not really in the coding.

If you do know all that, then the assignment-expression form is easily read as “while the current guess is too large, get a smaller guess”, where the “too large?” test and the new guess share an expensive sub-expression.

To my eyes, the original form is harder to understand:

This appendix attempts to clarify (though not specify) the rules when a target occurs in a comprehension or in a generator expression. For a number of illustrative examples we show the original code, containing a comprehension, and the translation, where the comprehension has been replaced by an equivalent generator function plus some scaffolding.

Since [x for ...] is equivalent to list(x for ...) these examples all use list comprehensions without loss of generality. And since these examples are meant to clarify edge cases of the rules, they aren’t trying to look like real code.

Note: comprehensions are already implemented via synthesizing nested generator functions like those in this appendix. The new part is adding appropriate declarations to establish the intended scope of assignment expression targets (the same scope they resolve to as if the assignment were performed in the block containing the outermost comprehension). For type inference purposes, these illustrative expansions do not imply that assignment expression targets are always Optional (but they do indicate the target binding scope).

Let’s start with a reminder of what code is generated for a generator expression without assignment expression.

  • Original code (EXPR usually references VAR): def f (): a = [ EXPR for VAR in ITERABLE ]
  • Translation (let’s not worry about name conflicts): def f (): def genexpr ( iterator ): for VAR in iterator : yield EXPR a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a simple assignment expression.

  • Original code: def f (): a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): if False : TARGET = None # Dead code to ensure TARGET is a local variable def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a global TARGET declaration in f() .

  • Original code: def f (): global TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): global TARGET def genexpr ( iterator ): global TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Or instead let’s add a nonlocal TARGET declaration in f() .

  • Original code: def g (): TARGET = ... def f (): nonlocal TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def g (): TARGET = ... def f (): nonlocal TARGET def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Finally, let’s nest two comprehensions.

  • Original code: def f (): a = [[ TARGET := i for i in range ( 3 )] for j in range ( 2 )] # I.e., a = [[0, 1, 2], [0, 1, 2]] print ( TARGET ) # prints 2
  • Translation: def f (): if False : TARGET = None def outer_genexpr ( outer_iterator ): nonlocal TARGET def inner_generator ( inner_iterator ): nonlocal TARGET for i in inner_iterator : TARGET = i yield i for j in outer_iterator : yield list ( inner_generator ( range ( 3 ))) a = list ( outer_genexpr ( range ( 2 ))) print ( TARGET )

Because it has been a point of confusion, note that nothing about Python’s scoping semantics is changed. Function-local scopes continue to be resolved at compile time, and to have indefinite temporal extent at run time (“full closures”). Example:

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0572.rst

Last modified: 2023-10-11 12:05:51 GMT

IMAGES

  1. Python Conditional Statements: IF…Else, ELIF & Switch Case (2023)

    assignment in python conditional

  2. 8.9. Chained conditionals

    assignment in python conditional

  3. Conditional statements in Python with examples

    assignment in python conditional

  4. Python

    assignment in python conditional

  5. How To Learn Python

    assignment in python conditional

  6. How To Use Ternary Conditional Operator In Python

    assignment in python conditional

VIDEO

  1. Python Conditional Statements A Beginners Guide

  2. Python Tutorial : Conditional Statement

  3. Python Conditional Statement #python #coding #code #basicpython #softwareengineer

  4. Week 3 graded assignment python #python #iitm

  5. Python-Conditional Statement 🔥😍🔥

  6. Grand Assignment

COMMENTS

  1. Python Conditional Assignment (in 3 Ways)

    Let's see a code snippet to understand it better. a = 10. b = 20 # assigning value to variable c based on condition. c = a if a > b else b. print(c) # output: 20. You can see we have conditionally assigned a value to variable c based on the condition a > b. 2. Using if-else statement.

  2. Best way to do conditional assignment in python

    Python conditional assignment operator. Related. 5. Python: avoiding if condition? 5. pythonic way to rewrite an assignment in an if statement. 3. Python shorthand for conditionally assigning a variable. 0. Is there a simpler way to allocate value to a variable given a if condition - Python? 3.

  3. Conditional Statements in Python

    Python supports one additional decision-making entity called a conditional expression. (It is also referred to as a conditional operator or ternary operator in various places in the Python documentation.) Conditional expressions were proposed for addition to the language in PEP 308 and green-lighted by Guido in 2005.

  4. Conditional Statements in Python

    Ternary Expression Conditional Statements in Python The Python ternary Expression determines if a condition is true or false and then returns the appropriate value in accordance with the result. The ternary Expression is useful in cases where we need to assign a value to a variable based on a simple condition, and we want to keep our code more ...

  5. A Comprehensive Guide to Using Conditionals in Python with Real-World

    Python provides an intuitive syntax using if, else, elif for implementing conditional code execution. In this guide, we covered the basics of conditionals in Python including operators, complex conditional chains, nesting conditionals, ternary expressions, and common errors. We examined real-world examples of using conditional logic for input ...

  6. Python's Assignment Operator: Write Robust Assignments

    Learning about the Python assignment operator and its use for writing assignment statements will arm you with powerful tools for writing better and more robust Python code. ... The assignment expression introduced in the conditional computes the sample size and assigns it to n. This way, you guarantee that you have a reference to the sample ...

  7. Conditional expression (ternary operator) in Python

    Python has a conditional expression (sometimes called a "ternary operator"). You can write operations like if statements in one line with conditional expressions.. 6. Expressions - Conditional expressions — Python 3.11.3 documentation

  8. How to Use Conditional Statements in Python

    Conditional statements are an essential part of programming in Python. They allow you to make decisions based on the values of variables or the result of comparisons. ... It is important to keep in mind that proper indentation is crucial when using conditional statements in Python, as it determines which code block is executed based on the ...

  9. Python if statements with multiple conditions (and + or) · Kodify

    If statements with and+ or. To handle complex scenarios, our if statement can combine the andand oroperators together. That way we turn several conditions into code, of which some have to happen simultaneously (and) while others need just one to be True(or). When we code complex conditions, it's a good idea to use parentheses ((and )).

  10. Python One Line Conditional Assignment

    Method 1: Ternary Operator. The most basic ternary operator x if c else y returns expression x if the Boolean expression c evaluates to True. Otherwise, if the expression c evaluates to False, the ternary operator returns the alternative expression y. <OnTrue> if <Condition> else <OnFalse>. Operand.

  11. 6. Expressions

    Conditional expressions (sometimes called a "ternary operator") have the lowest priority of all Python operations. The expression x if C else y first evaluates the condition, C rather than x . If C is true, x is evaluated and its value is returned; otherwise, y is evaluated and its value is returned.

  12. Introduction into Python Statements: Assignment, Conditional Examples

    Expression statements in Python are lines of code that evaluate and produce a value. They are used to assign values to variables, call functions, and perform other operations that produce a result. x = 5. y = x + 3. print(y) In this example, we assign the value 5 to the variable x, then add 3 to x and assign the result ( 8) to the variable y.

  13. The Walrus Operator: Python 3.8 Assignment Expressions

    Each new version of Python adds new features to the language. For Python 3.8, the biggest change is the addition of assignment expressions.Specifically, the := operator gives you a new syntax for assigning variables in the middle of expressions. This operator is colloquially known as the walrus operator.. This tutorial is an in-depth introduction to the walrus operator.

  14. python

    PEP 572 seeks to add assignment expressions (or "inline assignments") to the language, but it has seen a prolonged discussion over multiple huge threads on the python-dev mailing list—even after multiple rounds on python-ideas. Those threads were often contentious and were clearly voluminous to the point where many probably just tuned them out.

  15. Conditional Assignment Operator in Python

    Hence, no assignment operation is performed. If x is not defined, the try block will generate NameError, then the except block gets executed, and variable x is assigned to 10. Implement Ruby's ||= Conditional Assignment Operator in Python Using local and global Variables

  16. Inline If in Python: The Ternary Operator in Python • datagy

    A ternary operator is an inline statement that evaluates a condition and returns one of two outputs. It's an operator that's often used in many programming languages, including Python, as well as math. The Python ternary operator has been around since Python 2.5, despite being delayed multiple times.

  17. Assignment Expressions: The Walrus Operator

    In this lesson, you'll learn about the biggest change in Python 3.8: the introduction of assignment expressions.Assignment expression are written with a new notation (:=).This operator is often called the walrus operator as it resembles the eyes and tusks of a walrus on its side.. Assignment expressions allow you to assign and return a value in the same expression.

  18. Conditional/ternary operator for assignments in Python?

    C and many other languages have a conditional (AKA ternary) operator. This allows you to make very terse choices between two values based on the truth of a condition, which makes expressions, including assignments, very concise. I miss this because I find that my code has lots of conditional assignments that take four lines in Python: var ...

  19. PEP 572

    Unparenthesized assignment expressions are prohibited for the value of a keyword argument in a call. Example: foo(x = y := f(x)) # INVALID foo(x=(y := f(x))) # Valid, though probably confusing. This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

  20. Does Python have a ternary conditional operator?

    Even if this may be ugly, assignments can be done inside conditional expressions after Python 3.8. Anyway, it is still better to use normal if statement instead in this case. Share. ... Yes, Python has a ternary conditional operator, also known as the conditional expression or the ternary operator. The syntax of the ternary operator in Python is: